Summary of key points

- **1** A modulus function is, in general, a function of the type y = |f(x)|.
 - When $f(x) \ge 0$, |f(x)| = f(x)
 - When f(x) < 0, |f(x)| = -f(x)
- To sketch the graph of y = |ax + b|, sketch y = ax + b then reflect the section of the graph below the x-axis in the x-axis.

Pure

Had a look

Nearly there

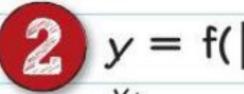
Nailed it!

Modulus

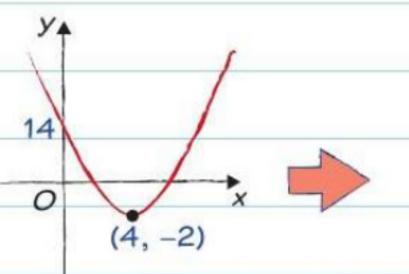
The **modulus** of a number is its positive numerical value. You write the modulus of x as |x|. You can use the graph of y = f(x) to sketch the graphs of y = |f(x)| and y = f(|x|).

$$y = f(x)$$

$$y = |f(x)|$$



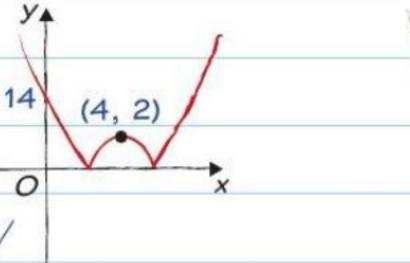
14



Any points **below** the x-axis are reflected in the x-axis.

Every point on the curve must

have a non-negative y-coordinate.

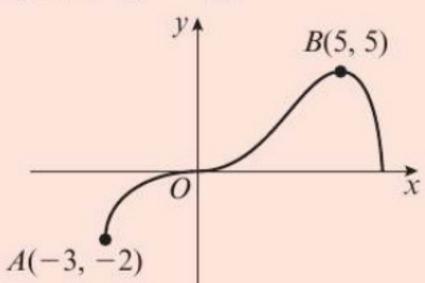


(-4, -2) (4, -2)

Replace the curve to the left of the y-axis with a reflection of the curve to the right of the y-axis.

Worked example

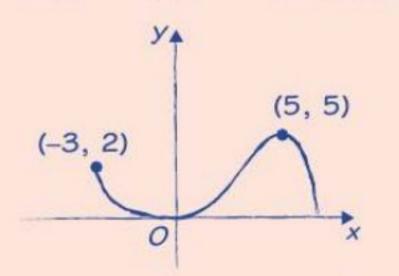
The diagram shows a sketch of the curve with equation y = f(x).

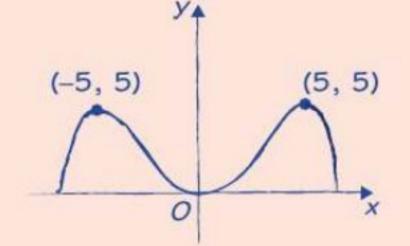


On separate diagrams sketch the following graphs, showing the coordinates of the points corresponding to A and B.

(a)
$$y = |f(x)|$$

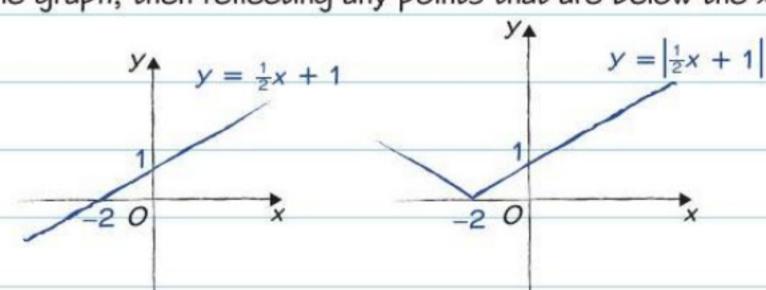
(3 marks) (b)
$$y = f(|x|)$$





Sketching y = |ax + b|

You can sketch the modulus of a linear function by sketching the graph, then reflecting any points that are below the x-axis.



The graph of y = |ax + b| is always a V-shape.

Worked example

The function f is defined by $f: x \mapsto 3|x| - 5$, $x \in \mathbb{R}$

State the range of f.

(2 marks)

 $f(x) \ge -5$

|x| is always greater than or equal to 0.

Now try this

The diagram shows a sketch of the curve with equation y = f(x). On separate diagrams sketch the following graphs.

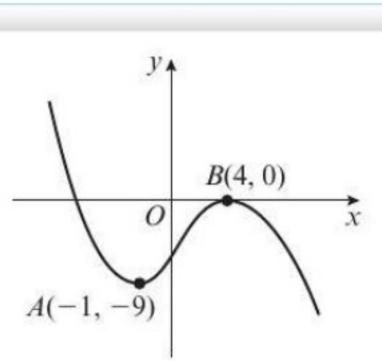
(a)
$$y = |f(x)|$$

(3 marks)

(b)
$$y = f(|x|)$$

(3 marks)

In each case, show the coordinates corresponding to the turning points A and B.



Modulus equations

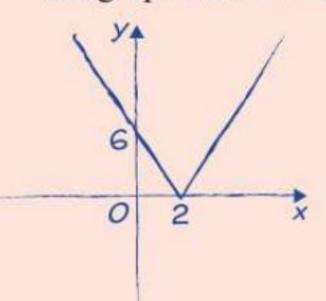
Solving an equation involving a modulus function is a bit like solving two equations. You need to consider the situations when the argument (the part inside the modulus) is **positive** and **negative** separately. You can use a graph to check that your answers make sense.

Worked example

The function f is defined by

$$f: x \mapsto |3x - 6|, x \in \mathbb{R}$$

(a) Sketch the graph with equation y = f(x), showing the coordinates of the points where the graph cuts or meets the axes. (2 marks)



(b) Solve f(x) = x

(3 marks)

$$3x - 6 = x$$
$$3x = x + 6$$

$$-(3x - 6) = x$$
$$-3x + 6 = x$$

$$2x = 6$$

$$6 = 4x$$

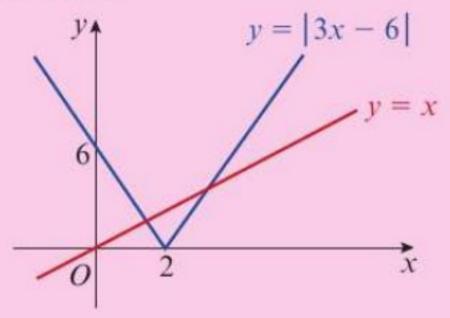
$$x = 3$$

Problem solved!

To solve |3x - 6| = x you need to solve **two** equations:

- Positive argument: 3x 6 = x
- Negative argument: -(3x 6) = x

Use your graph to check that the answers definitely exist:



If y = x crosses y = |3x - 6| twice then there are two solutions.

You will need to use problem-solving skills throughout your exam - be prepared!

Here is a foolproof way of solving equations involving a modulus:

- 1. Rearrange the equation so the modulus is on one side.
- 2. Solve the equation with a positive argument.
- 3. Solve the equation with a negative argument.
- 4. Use a graph or plug the answers back into the original equation to check that they exist.

Worked example

Solve $4 - |x + 2| = \frac{1}{2}x$

(5 marks)

$$\left|x+2\right|=4-\frac{1}{2}x$$

$$x + 2 = 4 - \frac{1}{2}x - (x + 2) = 4 - \frac{1}{2}x$$

$$\frac{3}{2}x = 2 - x - 2 = 4 - \frac{1}{2}x$$

$$x = \frac{4}{3} - 6 = \frac{1}{2}x$$

Check:
$$4 - \left| \frac{4}{3} + 2 \right| = 4 - \frac{10}{3} = \frac{2}{3} = \frac{1}{2} \left(\frac{4}{3} \right) \checkmark$$

 $4 - \left| -12 + 2 \right| = 4 - \left| -10 \right|$

$$= 4 - 10 = -6 = \frac{1}{2}(-12) \checkmark$$

x = -12

Now try this

1 The function f is defined by

$$f: x \mapsto |2x + 4|, \quad x \in \mathbb{R}$$

- (a) Sketch the graph with equation y = f(x), showing the coordinates of the points where the graph cuts or meets the axes. (2 marks)
- (b) Explain why the equation f(x) = x has no solutions. (1 mark)
- (c) Solve f(x) = -x

(3 marks)

2 Solve 2x + 1 = 5 - |x - 1|

(5 marks)

Be careful. This equation has only **one** solution. Find separate solutions for the positive and negative arguments, then plug them both back into the equation to check which one is valid.

Modulus transformations

You revised these transformations of the graph of y = f(x) on pages 13 and 14:

- y = f(x) + a Translation $\binom{O}{3}$
- y = f(x + a) Translation $\begin{pmatrix} -a \\ O \end{pmatrix}$
- y = af(x)Vertical stretch, scale factor a
- Horizontal stretch, scale factor -• y = f(ax)
- y = -f(x)Reflection in the x-axis
- y = f(-x)Reflection in the y-axis.

You need to be able to combine these transformations and use the modulus function to sketch more complicated transformations.

Golden rule

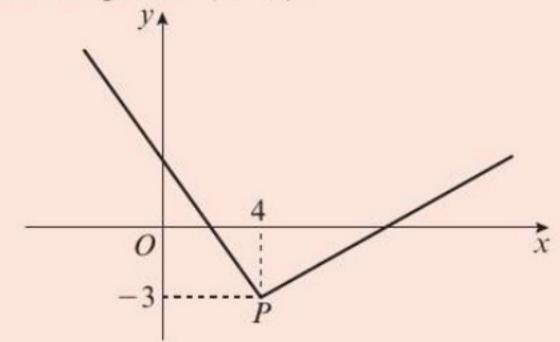
Carry out transformations in this order:

- Anything 'inside' the function brackets
- Multiples or modulus of the whole function
- Addition or subtraction outside the function brackets.

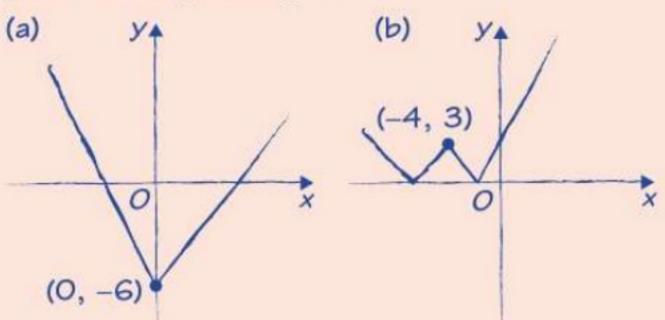
$$y = \frac{1}{2}f(|x|) + 4$$

Worked example

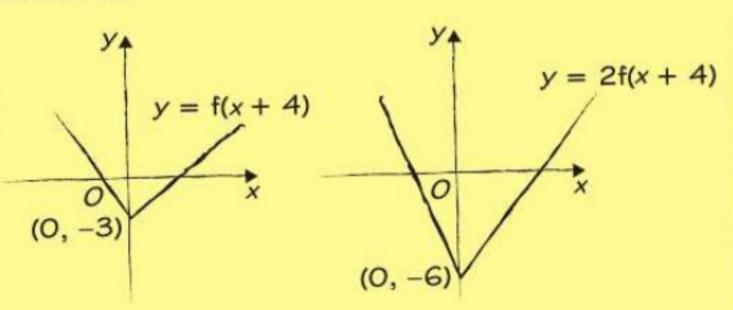
The diagram shows part of the graph of y = f(x), $x \in \mathbb{R}$. The graph consists of two line segments that meet at the point P(4, -3).



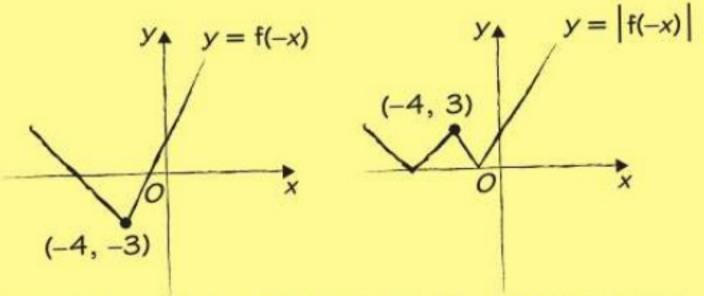
Sketch, on separate diagrams, the graphs of (a) y = 2f(x + 4) (3 marks) (b) y = |f(-x)| (3 marks) On each diagram, show the coordinates of the point corresponding to P.



For part (a) you need to carry out a translation $\begin{pmatrix} -4 \\ 0 \end{pmatrix}$ followed by a vertical stretch with scale factor 2.



For part (b) you need to carry out a reflection in the y-axis followed by a modulus.



Have a look at page 64 for a reminder about sketching the modulus of a function.

Now try this

The diagram shows a sketch of y = f(x). The graph has turning points at P and Q.

- (a) Write down the coordinates of the point to which Q is transformed on the curve with equation
 - (i) y = 2f(2x)
- (ii) y = |f(x + 4)|

(4 marks)

- (b) Sketch, on separate diagrams, the graphs of
 - (i) y = f(-x) + 3 (ii) y = -|f(x)|

(6 marks)

Indicate on each diagram the coordinates of any turning points.

