Summary of key points

9 If $y = ax^n$ then the graph of $\log y$ against $\log x$ will be a straight line with gradient n and vertical intercept $\log a$.

10 If $y = ab^x$ then the graph of log y against x will be a straight line with gradient log b and vertical intercept log a.

Modelling with logs

You can use logarithms to determine the constants in some exponential and polynomial models. There are two different cases that you need to know about:

The polynomial model

In this model a and n are constants. If x and y satisfy this model then the graph of $\log y$ against $\log x$ will be a straight line: $\log y = n \log x + \log a$

gradient = n y-intercept = log a

The exponential model $y = kb^x$

In this model k and b are constants. If x and y satisfy this model then the graph of $\log y$ against x will be a straight line: $\log y = (\log b) x + \log a$

gradient = log b y-intercept = log a

Worked example

A scientist models the mass, m grams, of a fluorine sample and the time elapsed, t hours, using the equation $m = pq^t$, where p and q are constants.

She observes the actual mass over a period of 10 hours, and plots the graph shown on the right, of t against $\log m$.

(2 marks)

Gradient =
$$\frac{1.1 - 2.7}{10} = -0.16$$

$$\log m = -0.16t + 2.7$$

(b) Determine the values of p and q in the model to 3 significant figures. (4 marks)

$$m = 10^{-0.16t + 2.7}$$

$$= 10^{2.7} \times (10^{-0.16})^t$$

$$= 501 \times 0.692^{t}$$

So
$$p = 501$$
 and $q = 0.692$ (3 s.f.)

For part (b), the safest approach is to rearrange the equation of the line into the form $m = pq^t$, then compare values.

Check it!

(c) Interpret these values in the context of the model. (2 marks)

p = 501 is the initial mass of the sample in grams.

q = 0.692 is the proportional change in the sample each hour.

(d) Use the model to predict the mass of the sample after 3 days.

3 days = 72 hours, so $m = 501 \times 0.692^{72} = 1.51 \times 10^9 g$

(e) Give one reason why this prediction may not be accurate.

(1 mark)

(1 mark)

The model is based on 10 hours of data, so it may not be accurate over a longer period.

Now try this

A computer algorithm is used to allocate medical students to hospitals. When there are N students, the runtime of the algorithm, x milliseconds, is expected to follow the rule $x = aN^b$, where a and b are constants.

(a) Show that this relationship can be written in the form $\log x = k \log N + c$, giving k and c in terms of a and b. (2 marks)

The algorithm is run a number of times and the following values of x and N are found:

N	1000	1500	2000	2500	3000	3500	4000
x	460	980	1660	2510	3520	4680	5990

- (b) Plot a graph of log x against log N, and comment on the accuracy of the expected model.(3 marks)
- (c) Find the values of a and b, giving your answers to 2 significant figures. (4 marks)