You can use **Partial Fractions** to integrate

In Section 2 (pages 14-15), you saw how to break down a scary-looking algebraic fraction into partial fractions. This comes in pretty handy when you're integrating — you could try other methods, but it would get messy and probably end in tears. Fortunately, once you've split it up into partial fractions, it's much easier to integrate.

> Be careful with the coefficients here. Try differentiating

them to see where they come

using the log laws (see p.76).

[8 marks]

from if you're not sure.

Example: Find
$$\int \frac{12x+6}{4x^2-9} dx$$
.

This is the example from p.14,

and it can be written as partial fractions like this: $\frac{2}{2x+3} + \frac{4}{2x-3}$

Integrating the partial fractions is much easier:
$$\int \left(\frac{2}{2x+3} + \frac{4}{2x-3}\right) dx = \ln |2x+3| + 2 \ln |2x-3| + C$$

$$= \ln |(2x+3)(2x-3)^2| + C$$

$$= \ln |(2x+3)(2x-3)^2| + C$$
This answer's been simplified in the log laws (see p.76).

Practice Questions

Q1 Find: a)
$$\int 4e^{2x} dx$$
, b) $\int e^{3x-5} dx$, c) $\int \frac{2}{3x} dx$, d) $\int \frac{2}{2x+1} dx$.

Q2 Integrate $\int \frac{20x^4 + 12x^2 - 12}{x^5 + x^3 - 3x} dx$.

Q3
$$\frac{3x+10}{(2x+3)(x-4)} \equiv \frac{A}{2x+3} + \frac{B}{x-4}$$
. Find the value of A and B, and hence find $\int \frac{3x+10}{(2x+3)(x-4)} dx$.

Exam Questions

Q1 Find
$$\int 3e^{(5-6\alpha)} dx$$
. [2 marks]

Q2 Given that
$$x = 1$$
 is a root of $x^3 - 6x^2 + 11x - 6$, completely factorise $x^3 - 6x^2 + 11x - 6$, and hence find $\int \frac{4x - 10}{x^3 - 6x^2 + 11x - 6} dx$.

<u>Don't cheat in your exams — copying's derivative, so revising's integral...</u>

There's quite a lot of different techniques to take in on these pages. Don't forget to try differentiating your answer at the end, so you know if it's gone wrong somewhere — checking my answers has saved my skin more times than I can tell you (28). Make sure you're a master of partial fractions before you even think about integrating them.