Integration by Parts

Just like you can differentiate products using the product rule (see p.100), you can integrate products using... er... integration by parts. Not quite as catchy I know, but just as thrilling.

Integration by Parts is the Reverse of the Product Rule

If you have to integrate a product but can't use integration by substitution (see the previous pages), you might be able to use integration by parts. The formula for integrating by parts is:

This is on the formula sheet —
$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$$
 ...or for definite integrals,
$$\int_a^b u \frac{dv}{dx} dx = [uv]_a^b - \int_a^b v \frac{du}{dx} dx$$
 where u and v are both functions of x .

..or for definite integrals,

$$\int_{a}^{b} u \frac{dv}{dx} dx = [uv]_{a}^{b} - \int_{a}^{b} v \frac{du}{dx} dx$$

The hardest thing about integration by parts is **deciding** which bit of your product should be u and which bit should be $\frac{dv}{dx}$. There's no set rule for this — you just have to look at both parts and see which one **differentiates** to give something **nice**, then set that one as u. For example, if you have a product that has a **single** x as one part of it, choose this to be u. It differentiates to 1, which makes **integrating** $v \frac{du}{dx}$ dead easy. If you have a product that
has ln x as one of its factors,
let u = ln x, as ln x is easy to
differentiate but quite tricky
to integrate (see below).

Examples: Find: a)
$$\int 2xe^x dx$$
, b) $\int_{\frac{\pi}{2}}^{\pi} x \sin x dx$.

a) Let u = 2x and let $\frac{dv}{dx} = e^x$. Then *u* differentiates to give $\frac{du}{dx} = 2$ and $\frac{dv}{dx}$ integrates to give $v = e^x$.

Put these into the integration by parts formula: $\int 2xe^x dx = 2xe^x - \int 2e^x dx$

 $= 2xe^{x} - 2e^{x} + C$

b) Let u = x and let $\frac{dv}{dx} = \sin x$.

Then *u* differentiates to give $\frac{du}{dx} = 1$ and $\frac{dv}{dx}$ integrates to give $v = -\cos x$.

Putting these into the formula gives: $\int_{\frac{\pi}{2}}^{\pi} x \sin x \, dx = [-x \cos x]_{\frac{\pi}{2}}^{\pi} - \int_{\frac{\pi}{2}}^{\pi} (-\cos x) \, dx$ $= [-x\cos x]_{\frac{\pi}{2}}^{\pi} + [\sin x]_{\frac{\pi}{2}}^{\pi}$

 $= \left[(-\pi \cos \pi) - \left(-\frac{\pi}{2} \cos \frac{\pi}{2} \right) \right] + \left[\sin \pi - \sin \frac{\pi}{2} \right]$ $= [\pi - 0] + [0 - 1] = \pi - 1$

You can integrate **In x** using **Integration by Parts**

Up till now, you haven't been able to integrate $\ln x$, but all that is about to change. There's a little trick you can use — write $(\ln x)$ as $(1 \times \ln x)$ then integrate by parts.

Examples: Find: a)
$$\int \ln x \, dx$$
, b) $\int (9x^2 - 2) \ln x \, dx$.

a) To find $\int \ln x \, dx$, write $\ln x = 1 \times \ln x$.

Let $u = \ln x$ and let $\frac{dv}{dx} = 1$.

Then *u* differentiates to give $\frac{du}{dx} = \frac{1}{x}$ and $\frac{dv}{dx}$ integrates to give v = x.

Putting these into the formula gives: $\int \ln x \, dx = x \ln x - \int x \frac{1}{x} \, dx$

$$= x \ln x - \int 1 \, \mathrm{d}x = x \ln x - x + C$$

b) Let $u = \ln x$ and let $\frac{dv}{dx} = 9x^2 - 2$.

Then *u* differentiates to give $\frac{du}{dx} = \frac{1}{x}$ and $\frac{dv}{dx}$ integrates to give $v = 3x^3 - 2x$.

Putting these into the formula gives: $\int (9x^2 - 2) \ln x \, dx = (3x^3 - 2x) \ln x - \int (3x^3 - 2x) \frac{1}{x} \, dx$

$$= (3x^3 - 2x) \ln x - \int (3x^2 - 2) \, dx$$

=
$$(3x^3 - 2x) \ln x - (x^3 - 2x) + C$$

= $(3x^3 - 2x) \ln x - x^3 + 2x + C$

Integration by Parts

You might have to integrate by parts More Than Once

If you have an integral that **doesn't** produce a nice, easy-to-integrate function for $v \frac{du}{dx'}$ you might have to carry out integration by parts more than once.

Examples: Find: a) $\int 3x^2 e^x dx$, b) $\int x^2 \sin x$.

a) Let
$$u = 3x^2$$
 and let $\frac{dv}{dx} = e^x$.

Then *u* differentiates to give $\frac{du}{dx} = 6x$ and $\frac{dv}{dx}$ integrates to give $v = e^x$.

Putting these into the formula gives: $\int 3x^2e^x dx = 3x^2e^x - \int 6xe^x dx$

To work out $\int 6xe^x dx$, use integration by parts again:

Let
$$u = 6x$$
 and let $\frac{dv}{dx} = e^x$. Then $\frac{du}{dx} = 6$ and $v = e^x$.

Putting these into the formula gives: $\int 6xe^x dx = 6xe^x - \int 6e^x dx = 6xe^x - 6e^x$

So
$$\int 3x^2 e^x dx = 3x^2 e^x - (6xe^x - 6e^x) + C = 3x^2 e^x - 6xe^x + 6e^x + C$$

b) Let
$$u = x^2$$
 and let $\frac{dv}{dx} = \sin x$.

Then *u* differentiates to give $\frac{du}{dx} = 2x$ and $\frac{dv}{dx}$ integrates to give $v = -\cos x$.

Putting these into the formula gives: $\int x^2 \sin x \, dx = -x^2 \cos x - \int -2x \cos x \, dx$

$$= -x^2 \cos x + \int 2x \cos x \, dx$$

 $2x \cos x$ isn't very easy to integrate, so integrate by parts again:

Let
$$u = 2x$$
 and let $\frac{dv}{dx} = \cos x$. Then $\frac{du}{dx} = 2$ and $v = \sin x$.

Putting these into the formula gives: $\int 2x \cos x \, dx = 2x \sin x - \int 2 \sin x \, dx$ $= 2x \sin x + 2 \cos x$

So
$$\int x^2 \sin x \, dx = -x^2 \cos x + 2x \sin x + 2 \cos x + C$$

Practice Question

Q1 Use integration by parts to find: a) $\int 3x^2 \ln x \, dx$,

b) $\int 4x \cos 4x \, dx$, c) $\int 8xe^{2x} \, dx$.

Exam Question

- Q1 A park occupies the area between a straight road modelled by the function y = 0, and another road which follows a path modelled by the function $y = e^x \sin x$, as shown in the diagram as area A.
 - Use integration by parts twice to show that the area of the park satisfies the equation: $A = [e^x \sin x]_0^2 - [e^x \cos x]_0^2 - A$
 - b) Hence find the area of the park between the boundaries at x = 0 and x = 2, correct to 3 s.f.

[5 marks]

[2 marks]

Not those 'parts', sunshine — put 'em away...

After you've had a go at some examples, you'll probably realise that integrals with ex, sin x or cos x in them are actually quite easy, as all three are really easy to integrate and differentiate. Fingers crossed you get one of them in the exam.