Differentiation

of the points A and B, you're looking at (x, f(x)) and

(x + h, f(x + h)) — as h gets closer to 0, x + h gets closer to x.

You can also Differentiate from First Principles

You can use this formula to find the derivative of a function from first principles. I know it looks nasty, but don't worry — it doesn't bite. =

You might see '&x' instead = means the same thing

Here's one of our classic step-by-step guides on how to tackle a question like this:

- 1) Find $\frac{f(x+h)-f(x)}{h}$ and **simplify** (you need to **remove** h from the **denominator** when you're simplifying).
- 2) Find the **limit** of the expression as h tends to zero (written $\lim_{n \to \infty}$) by setting h = 0 and simplifying.
- 3) If needed, put the x-value for your given point into the expression to find the **gradient** of f(x) at that point.

Example: Differentiate $f(x) = x^2$ from first principles.

Substitute
$$f(x) = x^2$$
 into the formula:
$$f'(x) = \lim_{h \to 0} \left(\frac{(x+h)^2 - x^2}{h} \right)$$
The x^2 s cancel on the top, and then you can cancel h from the bottom too.
$$= \lim_{h \to 0} \left(\frac{x^2 + 2hx + h^2 - x^2}{h} \right)$$

Now you can set h = 0 \Rightarrow = $\lim_{x \to a} (2x + h)$ (without dividing by 0) what a shocker... to find the derivative:

Practice Questions

Q1 Differentiate these functions with respect to x: a)
$$y = x^2 + 2$$
 b) $y = x^4 + \sqrt{x}$ c) $y = \frac{7}{x^2} - \frac{3}{\sqrt{x}} + 12x^3$

b)
$$y = x^4 + \sqrt{x}$$

c)
$$y = \frac{7}{x^2} - \frac{3}{\sqrt{x}} + 12x^2$$

- Q2 Find the gradient of the graph of $y = x^3 7x^2 1$ at x = 2.
- Q3 Find the equations of the tangent and the normal to the curve $y = \sqrt{x^3} 3x 10$ at x = 16.
- Q4 Use differentiation from first principles to find the derivative of f(x) = 5x.

Exam Questions

Q1 Find the gradient of the curve
$$y = \frac{1}{\sqrt{x}} + \frac{1}{x}$$
 at the point $\left(4, \frac{3}{4}\right)$.

[2 marks]

- Q2 The curve C is given by the equation $y = mx^3 x^2 + 8x + 2$, for a constant m.
 - a) Find $\frac{dy}{dx}$.

[1 mark]

The point P lies on C, and has an x-coordinate of S.

The normal to C at P is parallel to the line given by the equation y + 4x - 3 = 0.

b) Find the gradient of curve C at P.

[2 marks]

c) Hence or otherwise, find: (i) the value of m,

[3 marks]

(ii) the y-coordinate of P.

[2 marks]

Q3 Show that the lines $y = \frac{x^3}{3} - 2x^2 - 4x + \frac{86}{3}$ and $y = \sqrt{x}$ both go through the point (4, 2), and are perpendicular at that point.

[6 marks]

O4 Use a binomial expansion to differentiate $f(x) = x^4$ from first principles.

[5 marks]

f(x) and g(x) are like identical twins — it can be hard to differentiate them...

This is where A-level maths really kicks off, but don't get carried away and forget the basics. Always write out your working really clearly, particularly when differentiating from first principles. I mean, I know the answer's obvious, and I know you know the answer's obvious, but if they've asked you to use the formula then you'd better do it properly.