Summary of key points

- **9** To sketch the graph of y = |f(x)|
 - Sketch the graph of y = f(x)
 - Reflect any parts where f(x) < 0 (parts below the x-axis) in the x-axis
 - Delete the parts below the x-axis
- **10** To sketch the graph of y = f(|x|)
 - Sketch the graph of y = f(x) for $x \ge 0$
 - Reflect this in the y-axis
- **11** f(x + a) is a horizontal translation of -a.
- **12** f(x) + a is a vertical translation of +a.
- **13** f(ax) is a horizontal stretch of scale factor $\frac{1}{a}$
- **14** af(x) is a vertical stretch of scale factor a.
- **15** f(-x) reflects f(x) in the *y*-axis.
- **16** -f(x) reflects f(x) in the x-axis.

Modulus transformations

You revised these transformations of the graph of y = f(x) on pages 13 and 14:

- y = f(x) + a Translation $\binom{O}{3}$
- y = f(x + a) Translation $\begin{pmatrix} -a \\ O \end{pmatrix}$
- y = af(x)Vertical stretch, scale factor a
- Horizontal stretch, scale factor -• y = f(ax)
- y = -f(x)Reflection in the x-axis
- y = f(-x)Reflection in the y-axis.

You need to be able to combine these transformations and use the modulus function to sketch more complicated transformations.

Golden rule

Carry out transformations in this order:

- Anything 'inside' the function brackets
- Multiples or modulus of the whole function
- Addition or subtraction outside the function brackets.

$$y = \frac{1}{2}f(|x|) + 4$$

Worked example

The diagram shows part of the graph of y = f(x), $x \in \mathbb{R}$. The graph consists of two line segments that meet at the point P(4, -3).

Sketch, on separate diagrams, the graphs of (a) y = 2f(x + 4) (3 marks) (b) y = |f(-x)| (3 marks) On each diagram, show the coordinates of the point corresponding to P.

For part (a) you need to carry out a translation $\begin{pmatrix} -4 \\ 0 \end{pmatrix}$ followed by a vertical stretch with scale factor 2.

For part (b) you need to carry out a reflection in the y-axis followed by a modulus.

Have a look at page 64 for a reminder about sketching the modulus of a function.

Now try this

The diagram shows a sketch of y = f(x). The graph has turning points at P and Q.

- (a) Write down the coordinates of the point to which Q is transformed on the curve with equation
 - (i) y = 2f(2x)
- (ii) y = |f(x + 4)|

- (4 marks)
- (b) Sketch, on separate diagrams, the graphs of
 - (i) y = f(-x) + 3 (ii) y = -|f(x)|

(6 marks)

Indicate on each diagram the coordinates of any turning points.

