Fig. 5 shows part of the curve $y = \csc x$ together with the x- and y-axes.

- the equations of the two vertical asymptotes,
- the coordinates of the minimum point. (ii)
- (b) Show that the equation $x = \csc x$ has a root which lies between x = 1 and x = 2.
 - (c) Use the iteration $x_{n+1} = \csc(x_n)$, with $x_0 = 1$, to find
- the values of x_1 and x_2 , correct to 5 decimal places,
- this root of the equation, correct to 3 decimal places.

(d) There is another root of $x = \csc x$ which lies between x = 2 and x = 3.

Determine whether the iteration $x_{n+1} = \csc(x_n)$ with $x_0 = 2.5$ converges to this root. [1]

[2]

[1]

[2]

[1]

[1]

Sketch the staircase or cobweb diagram for the iteration, starting with $x_0 = 2.5$, on the diagram in the Printed Answer Booklet. [3]