| 5 (i) $\log_{[0]} n = \log_{[0]} a + kt \log_{[0]} 2$ This is of form $y = mx + c$ [with $\log_{[0]} n$ as y and t as x] 5 (ii) Reasonable line of best fit drawn (by eye) Suitable method leading to a value eg use of intercept leading to $0.9 < log a < 1.2$ So $7.4 < a < 15.85$ Suitable method leading to k value eg $k \log_{[0]} 2 = \text{gradient} \approx 0.33$ k in range $0 < k < 1.25$ and a in range $7.4 < a < 15.85$ A1 2.2a Finding gradient of line or sub'n of t and $\log n$ If gradient of exactly $1/3$ used $k = 1.10730936$ 5 (iii) $500000 = 10 \times 2^{1.1t}$ $1.1t \log 2 = \log 50000$ $t = 14.2$ $t = 14 \text{ is } 1/3/18$ M1 3.4 Correct substitution For $k = 1.10730936$ For $k = 1.10730936$ A1 1.1 Value of t (FT their a and k) For $k = 1.10730936$ For $k = 1.10730936$ | | | g g | | | | 2 | |--|---|-------|--|------------|------|----------------------------------|-------------------------------| | Solution | 5 | (i) | $\log_{[10]} n = \log_{[10]} a + kt \log_{[10]} 2$ | M1 | 1.1a | \mathbf{AG} Allow $t \log 2^k$ | | | 5(ii)Reasonable line of best fit drawn (by eye)B11.1aWith $0.9 < c < 1.2$ Suitable method leading to $0.9 < loga < 1.2$
So $7.4 < a < 15.85$ M12.2aMay use 2 points from line or condone use of 2 given pointsSuitable method leading to k value eg
$k \log_{10} 2 = \text{gradient} \approx 0.33$ M11.1Finding gradient of line or sub'n of t and $\log n$ If gradient of exactly $1/3$ used
$t = 1.10730936$ 5(iii) $500000 = 10 \times 2^{1.1t}$
$1.1t \log 2 = \log 50000$
$t = 14.2$
$t = 14 \text{ is } 1/3/18$ M13.4Correct substitutionA1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A2
A2
A3
A4
A4
A4
A4
A4
A4
A4
A | | | | E 1 | 1.1 | | | | Suitable method leading to a value eg use of intercept leading to $0.9 < log a < 1.2$ So $7.4 < a < 15.85$ Suitable method leading to k value eg $k \log_{10} 2 = \text{gradient} \approx 0.33$ k in range $0 < k < 1.25$ and a in range $7.4 < a < 15.85$ M1 1.1 Finding gradient of line or sub'n of t and $\log n$ If gradient of exactly $1/3$ used $k = 1.10730936$ 5 (iii) $500000 = 10 \times 2^{1.1t}$ $1.1t \log 2 = \log 50000$ $t = 14.2$ A1 1.1 Value of t (FT their a and k) For $k = 1.10730936$ A1 3.4 Translation into date | | | | [2] | | | | | Solution intended teaching to a value eg use of intercept leading to $0.9 < log a < 1.2$ So $7.4 < a < 15.85$ Suitable method leading to k value eg $k \log_{10} 2 = \text{gradient} \approx 0.33$ M1 1.1 Finding gradient of line or sub'n of t and $\log n$ If gradient of exactly 1/3 used t in range rang | 5 | (ii) | Reasonable line of best fit drawn (by eye) | B1 | 1.1a | With $0.9 < c < 1.2$ | | | State that related relating to k value of $k \log_{10} 2 = \text{gradient} \approx 0.33$ If gradient of exactly 1/3 used | | | leading to $0.9 < loga < 1.2$ | M1 | 2.2a | | from line or condone use of 2 | | K in range $0 < k < 1.25$ and a in range $7.4 < a < 15.85$ A1 2.2a exactly 1/3 used k = 1.10730936 5 (iii) 500000 = $10 \times 2^{1.1t}$ M1 3.4 Correct substitution $t = 14.2$ A1 1.1 Value of t (FT their a and k) For $k = 1.10730936$ $t = 14$ is $1/3/18$ M1 3.4 Translation into date Translation into date Same answer | | | | M1 | 1.1 | | | | 5 (iii) $500000 = 10 \times 2^{1.1t}$ M1 3.4 Correct substitution $t = 14.2$ A1 1.1 Value of t (FT their a and k) For $k = 1.10730936$ $t = 14$ is $1/3/18$ M1 3.4 Translation into date $t = 14.1$ Same answer | | | k in range 0 < k < 1.25 and a in range 7.4 < a < 15.85 | A1 | 2.2a | | | | 1.1 $t \log 2 = \log 50000$
t = 14.2
t = 14 is 1/3/18 A1 1.1 Value of t (FT their a and k) For $k = 1.10730936$ $t = 14.1$ Same answer | | | | [4] | | | <i>k</i> =1.10730936 | | t = 14.2 t = 14 is 1/3/18 A1 1.1 Value of t (FT their a and k) For $k = 1.10730936$ Translation into date A1 1.1 Same answer | 5 | (iii) | $500000 = 10 \times 2^{1.1t}$ | M1 | 3.4 | Correct substitution | | | $t = 14 \text{ is } 1/3/18$ $M1 \qquad 3.4 \qquad \text{Translation into date}$ $A1 \qquad \qquad$ | | | $1.1t \log 2 = \log 50000$ | | | | | | | | | t = 14.2 | A1 | 1.1 | Value of t (FT their a and k) | For k= 1.10730936 | | | | | t = 14 is 1/3/18 | M1 | 3.4 | Translation into date | M. 70.70.70 | | | | | So 1/4/18 | | 3.2a | Rounding up | | | Question | | n | Answer | Marks | AOs | Guidance | | |----------|------|---|--|-------|------|----------|--| | 5 | (iv) | | Suitable reason | E1 | 3.5b | | | | | | | e.g. The data are only for a short time scale and cannot extrapolate e.g. There will not be enough people for the growth to continue | | | | | | | | | | [1] | | | |