4 Fig. 14.1 shows the curve with equation $y = \frac{1}{1+x^2}$, together with 5 rectangles of equal width.

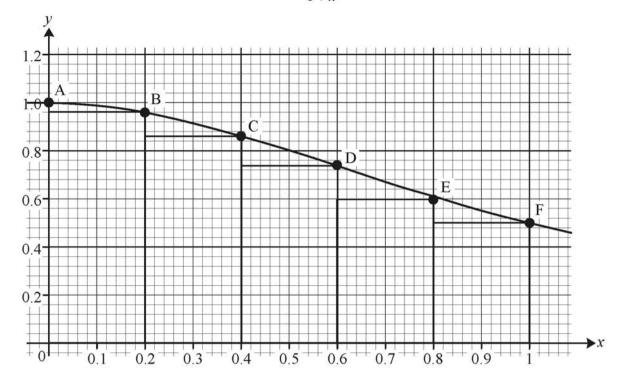


Fig. 14.1

Fig. 14.2 shows the coordinates of the points A, B, C, D, E and F.

Point	A	В	С	D	Е	F
x	0	0.2	0.4	0.6	0.8	1
у	1	0.96154	0.86207	0.73529	0.60976	0.5

Fig. 14.2

- (a) Use the 5 rectangles shown in Fig. 14.1 and the information in Fig. 14.2 to show that a lower bound for $\int_0^1 \frac{1}{1+x^2} dx$ is 0.7337, correct to 4 decimal places. [2]
- (b) Use the 5 rectangles shown in Fig. 14.1 and the information in Fig. 14.2 to calculate an upper bound for $\int_0^1 \frac{1}{1+x^2} dx$ correct to 4 decimal places. [2]
- (c) Hence find the length of the interval in which your answers to parts (a) and (b) indicate the value of $\int_0^1 \frac{1}{1+x^2} dx$ lies. [1]

Amit uses *n* rectangles, each of width $\frac{1}{n}$, to calculate upper and lower bounds for $\int_0^1 \frac{1}{1+x^2} dx$, using different values of *n*. His results are shown in **Fig. 14.3**.

n	10	20	40
upper bound	0.80998	0.79779	0.79162
lower bound	0.75998	0.77279	0.77912

Fig. 14.3

(d) Find the length of the smallest interval in which Amit now knows
$$\int_0^1 \frac{1}{1+x^2} dx$$
 lies.
(e) Without doing any calculation, explain how Amit could find a smaller interval which

[2]

(e) Without doing any calculation, explain how Amit could find a smaller interval which contains the value of $\int_0^1 \frac{1}{1+r^2} dx$.