Question		on	Answer	Marks	AO	Guidance
3	(a)		3	M1	1.1	decreasing concave up curve in 1 st and 2 nd quadrants which does not cut the <i>x</i> -axis; mark intent
			6	B1	1.1	decreasing curve with intercept (0,3); may be in one quadrant only
			2	A1	1.1	smooth curve from $(-0.5, a)$ through $(2.5, b)$, where $4.5 \le a \le 5$ and $0 < b < 0.5$
			0 2		2	
				[3]		
3	(b)		$\log (3 \times 0.4^{x}) = \log (0.8)$ oe	M1	3.1a	taking logarithms in any base
			$x\log 0.4 = \log 0.8 - \log 3 \text{ oe}$	M1	1.1	3 rd law of logs used correctly
			1.44 cao	A1	1.1	if M0M0 allow SC1 for 1.44 unsupported
			Alternatively			
			$0.4^x = \frac{0.8}{3}$	M1		
			$x = \log_{0.4}\left(\frac{0.8}{3}\right)$	M1		may see $x\log 0.4 = \log\left(\frac{0.8}{3}\right)$ oe
			x = 1.44 cao	A1		
				[3]		