14	(a)	$2x(x-2)^3 + x^2 \times 3(x-2)^2$	M1	3.1a	product rule & chain rule; allow one error	
			A1	1.1		
		(x-2) identified as factor	M1	2.1		
		$x(x-2)^2(5x-4)$ cao	A1	1.1		
			[4]			
		Alternative	M1		NB from $x^5 - 6x^4 + 12x^3 - 8x^2$	
		$5x^4 - 24x^3 + 36x^2 - 16x$			expand brackets and differentiate; allow	
			A1		one error	
		(x-2) identified as factor	M1			
		$x(x-2)^2(5x-4)$ cao	A 1			
			[4]			

Question		n	Answer	Marks	AOs	Guidance	
14	(b)		their $\frac{dy}{dx} = 0$ soi	M1	2.1		
			$x = 0, 2, \frac{4}{5}$	A1	1.1		
			(0,0) and (2.0)	A1	1.1		
			$(0.8, -1.10592)$ or $(0.8, -\frac{3456}{3125})$	A1	2.2a	accept – 1.10592 to 2 sf or better	
				[4]			
14	(c)		2^{nd} derivative = -16 at $(0,0)$ so max	B1	1.1	or for any of the three points: considers y or $\frac{dy}{dx}$ or $\frac{d^2y}{dx^2}$ either side of correct	
			2^{nd} derivative = 5.76 at (0.8, -1.10592) so min	B1	1.1	stationary point accompanied by suitable commentary; must see numerical values	
			eg gradient = 1 at $x = 1$ and 33 at $x = 3$ so inflection at $x = 2$ eg $y = -1$ at $x = 1$ and $y = 9$ at $x = 3$ so inflection at $x = 2$	В1	3.1a		
			NB 2^{nd} derivative test is indecisive at $x = 2$	[2]			
1.4	(4)			[3]			
14	(d)			M1	1.1	shape of curve correct with max, min and inflection correct intercepts marked on sketch or identified next to graph	
				[2]			