14	Alex places a hot object into iced water and records the temperature θ °C of the object every minute. The temperature of an object t minutes after being placed in iced water is modelled by $\theta = \theta_0$ e where θ_0 and k are constants whose values depend on the characteristics of the object. The temperature of Alex's object is 82 °C when it is placed into the water. After 5 minutes the temperature is 27 °C.		
	(a)	Find the values of θ_0 and k that best model the data.	[3]
	(b)	Explain why the model may not be suitable in the long term if Alex does not top up the ic the water.	e in [1]
	(c)	Show that the model with the values found in part (a) can be written as $\ln \theta = a - bt$ whe and b are constants to be determined.	re <i>a</i> [2]
	Ben places a different object into iced water at the same time as Alex. The model for Ben's object is $\ln \theta = 3.4 - 0.08t$.		
	(d)	Determine each of the following:	
		• the initial temperature of Ben's object	
		• the rate at which Ben's object is cooling initially.	[4]
	(e)	According to the models, there is a time at which both objects have the same temperature.	
		Find this time and the corresponding temperature.	[3]