Question		n	Answer	Marks	AOs	Guidance	
8	(a)		Karim has a valid argument that there is a root between 5 and 6 because there is a change of sign on his table	E1	2.3	Argues from change of sign that this argument is valid	Allow argument is not valid as he does not state that the function is continuous
8	(b)		There are two roots between 2 and 3 (and/or between 4 and 5) so there is no change of sign in the table	E1 [1]	2.3	Allow for a comment that implies changes of sign are missed	
8	(c)	(i)	$f'(x) = 4\cos 4x - e^{-x}$	M1	1.1b	Attempt to differentiate	
			So N-R formula is $x_{n+1} = x_n - \frac{\sin 4x_n + e^{-x_n} + 0.75}{4\cos 4x_n - e^{-x_n}}$	A1 [2]	1.1b	cao, but condone missing subscripts in the fraction	
8	(c)	(ii)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	M1	1.1b	Produces at least two iterations	(root is 2.907845109 to 10 sf)
			x_2 2.908274 x_3 2.907846	A1	1.1b	Three iterations with correct values either rounded or truncated to at least 3 decimal places	
			The root is 2.908 to 4 s.f.	A1 [3]	2.2a	Correct to at least 3 s.f. FT their values if their sequence seems to converge	
8	(d)	(i)		B1	1.1b	Attempt to draw a tangent at $x = 5$ as far as the x -axis	
				B1 [2]	1.1b	Drawing the second tangent approximately at the point where $x = 3.97$ as far as the <i>x</i> -axis.	
8	(d)	(ii)	The start value is close to a stationary point, [so the gradient is very small] and the tangent meets the <i>x</i> -axis	B1	2.4	Conveys the idea that the stationary point or the value of the gradient	
			far away from the required root			causes the problem	
			The sequence converges to a root, but not the required root	B1 [2]	2.4	Conveys the idea that the wrong root is found	
8	(d)	(iii)	Use x_0 any value [between 5.28 and 5.85] which is nearer to the required root.	E1 [1]	2.4	Allow for a 'starting value between 5 and 6' oe	