Question		n	Answer	Marks	AOs		Guidance
12	(a)		$\frac{f(x+h)-f(x)}{h} = \frac{(x+h)^3 - (x+h) - (x^3 - x)}{h}$	M1	2.1	Substituting into $\frac{f(x+h)-f(x)}{h}$	
			$\frac{f(x+h)-f(x)}{h} = \frac{(x+h)^3 - (x+h)-(x^3 - x)}{h}$ $= \frac{x^3 + 3hx^2 + 3h^2x + h^3 - x - h - (x^3 - x)}{h}$ $= \frac{3x^2h + 3xh^2 + h^3 - h}{h} = 3x^2 + 3xh + h^2 - 1$	A1	2.1	and attempt to expand $(x+h)^3$ Correct expansion of $(x+h)^3$	Allow correct 6 terms not simplified
			$= \frac{3x + 3xh + h - h}{h} = 3x^{2} + 3xh + h^{2} - 1$ $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	M1	2.1	Simplifying the fraction to eliminate a denominator	simpimed
			$= \lim_{h \to 0} \left(3x^2 - 1 + 3xh + h^2 \right) = 3x^2 - 1$	E1 [4]	2.1	Must include the idea of limit as h tends to zero AG	
12	(b)		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1 B1 (dep) [2]	1.1a 1.1	Correct shape with vertex on the negative y-axis $(0, -1)$ labelled and an indication the graph crosses the x-axis at $\left(\pm \frac{1}{\sqrt{3}}, 0\right)$	Allow without $\pm \frac{1}{\sqrt{3}}$ if clear that the points are between $(-1,0)$ and $(1,0)$
12	(c)		Point of inflection when $f''(x) = 0$	M1 A1	2.1	Equating their second derivative to zero Must explain that this is the only	
			f''(x) = 6x = 0 has only one root $x = 0When x = 0, f'(x) = -1 \neq 0 so the point of inflection is not a stationary point.$	E1 [3]	2.1	point of inflection Must prove that the point is not stationary from correct value for f'(0)	Also allow if shown that the stationary points are at
						* **	$\left(\pm\frac{1}{\sqrt{3}},0\right)$