| 15 | A model for the motion of a small object falling through a thick fluid can be expressed using the differential equation | | |----|---|-----| | | $\frac{\mathrm{d}v}{\mathrm{d}t} = 9.8 - kv,$ | | | | where $v \mathrm{ms}^{-1}$ is the velocity after $t \mathrm{s}$ and $k \mathrm{is}$ a positive constant. | | | | (a) Given that $v = 0$ when $t = 0$, solve the differential equation to find v in terms of t and k . | [7] | | | (b) Sketch the graph of v against t . | [2] | | | Experiments show that for large values of t , the velocity tends to $7 \mathrm{ms}^{-1}$. | | | | (c) Find the value of k . | [2] | | | (d) Find the value of t for which $v = 3.5$. | [1] |