15	A model for the motion of a small object falling through a thick fluid can be expressed using the differential equation	
	$\frac{\mathrm{d}v}{\mathrm{d}t} = 9.8 - kv,$	
	where $v \mathrm{ms}^{-1}$ is the velocity after $t \mathrm{s}$ and $k \mathrm{is}$ a positive constant.	
	(a) Given that $v = 0$ when $t = 0$, solve the differential equation to find v in terms of t and k .	[7]
	(b) Sketch the graph of v against t .	[2]
	Experiments show that for large values of t , the velocity tends to $7 \mathrm{ms}^{-1}$.	
	(c) Find the value of k .	[2]
	(d) Find the value of t for which $v = 3.5$.	[1]