| 15 | A family is planning a holiday in Europe. They need to buy some euros before they go. The exchange rate, y , is the number of euros they can buy per pound. They believe that the exchange rate may be modelled by the formula | e | |----|--|-----| | | $y = at^2 + bt + c,$ | | | | where t is the time in days from when they first check the exchange rate. | | | | Initially, when $t = 0$, the exchange rate is 1.14. | | | | (a) Write down the value of c . | [1] | | | When $t = 2$, $y = 1.20$ and when $t = 4$, $y = 1.25$. | | | | (b) Calculate the values of a and b . | [2] | | | The family will only buy their euros when their model predicts an exchange rate of at least 1.29 | • | | | (c) Determine the range of values of <i>t</i> for which, according to their model, they will buy their euros. | [3] | | | (d) Explain why the family's model is not viable in the long run. | [1] |