11	A car is travelling along a stretch of road at a steady speed of $11 \mathrm{m s}^{-1}$.
	The driver accelerates, and t seconds after starting to accelerate the speed of the car, V , is modelled by the formula
	$V = A + B(1 - e^{-0.17t}).$
	When $t = 3$, $V = 13.8$.
	(a) Find the values of A and B, giving your answers correct to 2 significant figures. [3]
	When $t = 4$, $V = 14.5$ and when $t = 5$, $V = 14.9$.
	(b) Determine whether the model is a good fit for these data. [2]
	(c) Determine the acceleration of the car according to the model when $t = 5$, giving your answer correct to 3 decimal places. [2]
	The car continues to accelerate until it reaches its maximum speed.
	The speed limit on this road is $60\mathrm{kmh}^{-1}$. All drivers who exceed this speed limit are recorded by a speed camera and automatically fined £100.
	(d) Determine whether, according to the model, the driver of this car is fined £100. [3]