Question		n	Answer	Marks	AOs	Guidance	
8	(a)		DR		7		
			$\frac{dy}{dx} = 4x - 3 = 0$ at a stationary point	M1	1.1	Attempt to differentiate and equate to zero	Differentiation must be used
			x = 0.75 When $x = 0.75$, $y = 2 \times 0.75^2 - 3 \times 0.75 - 2 = -3.125$	A1 A1	1.1 1.1	cao any form	$\left(\frac{3}{4}, -\frac{25}{8}\right)$
			So stationary point at (0.75, -3.125)	[3]	,		(1.5)
8	(b)		$\frac{d^2 y}{dx^2} = 4 > 0 \text{ so minimum point}$	M1 E1	1.1 2.2a	Finding the second derivative FT their derivative Clear conclusion from consideration of	Do not allow from an argument based on the coefficient of x^2
0	(-)		DR	[2]		the sign of the second derivative	Also allow M1 for
8	(c)		Min point at $(0.75, -3.125)$ (0, -2) is on the curve	M1	1.1a	Attempt to sketch a parabola using their labelled minimum point	attempt to sketch parabola using the intersection with at
			$y \ge 2x^2 - 3x - 2 \text{ is the}$ shaded region above the	A1	1.1a	Parabola with their minimum point and one other correct point clearly shown	least one axis A1 parabola through 3 correct points eg
			curve including the boundary	A1	1.1b	Area above their curve indicated and	(-0.5, 0), (2. 0) and (0, -2). Other points include (-2, 12),
				[3]		the boundary clearly included	(-1, 3) (1, -3) (3, 7)
8	(d)			M1	1.1a	Factorising the quadratic expression or attempting to solve $2x^2 - 3x - 2 = 0$	Allow M1A1 for roots of quadratic equation
			boundary values $x = -\frac{1}{2}$ and 2	A1	1.1a	Correct roots of the quadratic equation	BC
			${x: x < -\frac{1}{2}} \cup {x: x > 2}$	A1	1.1a	Indicates that the required sets are less than their lower root and more than	Allow M1A1A1A0 if solved BC without set
				A1	2.5	their upper root Correct set notation must be used. FT their roots	notation seen
				[4]		then roots	