Question		n	Answer	Marks	AOs	Guidance	
11	(a)		The argument is not correct. $x < 16$ includes negative values for x for which $x^{\frac{1}{2}}$ does not exist so the statement does not imply that $x^{\frac{1}{2}} < 4$.	E1	2.3	DR Allow that x must be positive	Allow the correct solution $0 \le x < 16$ or $0 < x < 16$ without further explanation
11	(b)		EITHER Take logs of both sides $x \log \left(\frac{1}{2}\right) < \log 4$ Giving $x > \frac{\log 4}{\log \left(\frac{1}{2}\right)}$ [since $\log \left(\frac{1}{2}\right)$ is negative] $x > -2$	M1 B1 A1 [3]	2.1 1.1a 2.1	Use of laws of logs must be seen Allow equivalent with natural logs Award for the boundary value even if only evaluated. Correct inequality.	
			OR Solve $\left(\frac{1}{2}\right)^x = 4$ by taking logs base $\frac{1}{2}$ $\log_{\frac{1}{2}}(4) = -2$ Test value – eg when $x = 0$ $\left(\frac{1}{2}\right)^0 = 1 < 4$ So $x > -2$	M1 B1 A1 [3]		Using log base $\frac{1}{2}$ Award for the boundary value even if only seen as part of an equation or incorrect inequality Correct inequality.	

Question		n	Answer	Marks	AOs	Guidance	
11	(c)		Using laws of logs $\log_2(x+8)^2 - \log_2(x+6) = 3$	M1	3.1a	DR At least one correct use of laws of logs	
			$\log_2 \frac{\left(x+8\right)^2}{\left(x+6\right)} = 3$				
			$\frac{\left(x+8\right)^2}{\left(x+6\right)} = 2^3$	M1	3.1a	Clearing logs to obtain 2 ³ or 8 seen in an equation	
			$\left(x+8\right)^2=8\left(x+6\right)$	A1	1.1	Correct quadratic	
			$x^{2} + 8x + 16 = 0$ Discriminant is $8^{2} - 4 \times 1 \times 16 = 0$	M1	2.1	Attempt to find the discriminant of their quadratic (allow one slip)	Allow M1 for an attempt to solve their quadratic
			so there is only one solution	A1 [5]	2.2a	Correct argument from zero discriminant or repeated root $x = -4$ found	