Question		n	Answer	Marks	AOs	Guidance	
7	(a)		$\frac{dy}{dx} = 12x^2 - 12x - 9$	M1	1.1a	DR Attempt to differentiate seen	
			$\frac{dy}{dx} = 12x^2 - 12x - 9$ When $\frac{dy}{dx} = 12x^2 - 12x - 9 = 0$ $3(2x+1)(2x-3) = 0 \text{ so } x = -0.5, 1.5$	M1	1.1a	Attempt to solve their $\frac{dy}{dx} = 0$	
			3(2x+1)(2x-3) = 0 so $x = -0.5$, 1.5 (dep)	1.1a	Both values seen – may be indicated on the graph		
			$\frac{dy/dx}{1.5}$	B1	1.1	Correct shape through (0, –9)	SC For cubic graph of the function drawn with M0M0A0 allow SC1 for correct shape with minimum when $x = 1.5$, and maximum when $x = -0.5$
7	(b)		Min point of gradient function when $\frac{d^2y}{dx^2} = 24x - 12 = 0 \text{ so } x = \frac{1}{2}$	M1	3.1a	DR Attempt to find the vertex (including completing the square or symmetry argument)	
			Gradient is decreasing for $\left\{x: x < \frac{1}{2}\right\}$	A1 [2]	2.5	Inequality correctly formed and expressed as a set. Allow either < or ≤	