10	(a)	DR				
	236-3-150	$\frac{dy}{dx} = 24 - 6x - 3x^2$	M1	1.1a	Expression for derivative seen	
		$\frac{dy}{dx} = 24 - 6x - 3x^2$ When $x = 0$, $\frac{dy}{dx} = 24$	A 1	1,1	May be shown on graph or in the working	
		When $\frac{dy}{dx} = 0$, $-3(x^2 + 2x - 8) = 0 \Rightarrow (x + 4)(x - 2) = 0$	M1	1.1a	Method for solving their quadratic equation (allow any algebraic	
		x = -4, 2	A1	3.1a	method) Must be seen on graph	
		30 dy/dx 20 10 x 4 -3 -2 -1 1 2 3 4 5	B1 [5]	1.1	Correct shape. Maximum point should be to the left of the y-axis but need not be exact.	
10	(b)	DR Decreasing function when $\frac{dy}{dx} < 0$	M1	1.1a	Attempt to give the values of x for which $\frac{dy}{dx} < 0$ from their graph	Do not allow A1 for $x < -4$, $x > 2$ x < -4 and $x > 2$
		$\{x: x < -4\} \cup \{x: x > 2\}$	A1	2.5	FT their graph if quadratic	$\begin{vmatrix} x & -4 & x & 2 \\ -4 & x & 2 \end{vmatrix}$
		Consider the State Constitution of	[2]		Condone use of \leq for M mark Allow for " $x < -4$ or $x > 2$ " Must be correct use of language or set notation here.	