The intensity of the sun's radiation, y watts per square metre, and the average distance from the sun x astronomical units, are shown in Fig. 11 for the planets Mercury and Jupiter.									
			x	У					
		Mercury	0.3075	14400					
		Jupiter	4.950	55.8					
Fig. 11 The intensity y is proportional to a power of the distance x .									
(i)	Write down an equation for y in terms of x and two constants.								[1]
(ii)	Show that the equation can be written in the form $\ln y = a + b \ln x$.								[2]
(iii)	In the Printed Answer Booklet, complete the table for $\ln x$ and $\ln y$ correct to 4 significant figures.								[2]
(iv)	Use the values from part (iii) to find a and b .								[3]
(v)	Hence rewrite your equation from part (i) for y in terms of x , using suitable numerical values for the								

Sketch a graph of the equation found in part (v).

Earth is 1 astronomical unit from the sun. Find the intensity of the sun's radiation for Earth.

[2]

[2]

[1]

11

constants.

(vi)

(vii)