

Question		Answer	Marks	AO	Guidance	
3	(a)	$(3-2x)^{-2} = \frac{1}{9}(1+...)^{-2}$ $(1+kx)^{-2} = 1 + (-2)(kx) + \dots$ $\dots + \frac{(-2)(-3)}{2!}(kx)^2$ $(3-2x)^{-2} = \frac{1}{9}\left(1 + \frac{4}{3}x + \frac{4}{3}x^2 + \dots\right)$	B1 B1FT B1FT B1	1.1a 1.1 1.1 1.1	For reference: $\frac{1}{9}\left(1 - \frac{2}{3}x\right)^{-2}$ - soi Correct first two terms follow through their k – allow un-simplified Correct third term following through their k – allow un-simplified but must imply that the third term contains their k^2 - for correct k condone $\frac{2 \times 3}{2!} \left(\frac{2}{3}x\right)^2$ (or similar for their k if negative) Or correct equivalent e.g. $\frac{1}{27}(3 + 4x + 4x^2)$, $\frac{1}{9} + \frac{4}{27}x + \frac{4}{27}x^2$, etc. ISW after correct expansion seen	or for $3^{-2}(1+...)^{-2}$ $k \neq \pm 1, \pm 2$ - if correct $k = -\frac{2}{3}$ $k \neq \pm 1, \pm 2$ Condone $\frac{2 \times 3}{2!}(kx)^2$ and 2 for 2! Ignore higher order terms if found – a correct answer scores all 4 marks www

Question		Answer	Marks	AO	Guidance	
3	(b)	$ x < \frac{3}{2}$	B1 [1]	2.5	oe, for example, $-\frac{3}{2} < x < \frac{3}{2}$ - allow $-\frac{3}{2} \leq x < \frac{3}{2}$ but not $-\frac{3}{2} \leq x \leq \frac{3}{2}$ (or any inequality that includes the $\frac{3}{2}$) - ISW once correct inequality seen. Allow $\left[-\frac{3}{2}, \frac{3}{2}\right)$ or $\left(-\frac{3}{2}, \frac{3}{2}\right)$ oe but not $\left[0, \frac{3}{2}\right)$ (or equivalents in set notation)	$-\frac{3}{2} < x < \frac{3}{2}$ is B0 but $0 \leq x < \frac{3}{2}$ is B1 Note that $ 2x < 3$ only is B0 (must be in terms of x)
3	(c)	$\frac{a+x}{(3-2x)^2} = (a+x)\left(\frac{1}{9} + \frac{4}{27}x + \dots\right)$ $= \dots + \left(\frac{1}{9} + \frac{4}{27}a\right)x + \dots$	B1FT B1FT [2]	3.1a 2.2a	Finding correct coefficient of x or the x term for their $(p+qx+\dots)(a+x)$ - FT their p and q from part (a) (so their x -coefficient must be $p+aq$). Allow embedded in an expansion e.g. $= \frac{1}{9} \left(\dots + \left(\frac{4}{3}a + 1\right)x + \dots \right)$ or $= \frac{1}{9} \left(\dots + \frac{4}{3}ax + x + \dots \right)$ Follow through $\frac{\text{their constant term}}{\text{their coefficient of } x}$ from part (a)	This mark can be implied by the correct answer for a (or on the FT as detailed in the next mark)