A car C is moving horizontally in a straight line with velocity $v \, \text{m s}^{-1}$ at time t seconds, where v > 0 and $t \ge 0$. The acceleration, $a \, \text{m s}^{-2}$, of C is modelled by the equation

[3]

[6]

[2]

[1]

$$a = v\left(\frac{8t}{7+4t^2} - \frac{1}{2}\right).$$

(a) In this question you must show detailed reasoning.

Find the times when the acceleration of *C* is zero.

each step of the iteration process.

At t = 0 the velocity of C is $17.5 \,\mathrm{m\,s}^{-1}$ and at t = T the velocity of C is $5 \,\mathrm{m\,s}^{-1}$.

(b) By setting up and solving a differential equation, show that T satisfies the equation $T = 2 \ln \left(\frac{7 + 4T^2}{2} \right)$.

(d) The diagram below shows the velocity-time graph for the motion of C.

Find the time taken for C to decelerate from travelling at its maximum speed until it is travelling at $5 \,\mathrm{m\,s}^{-1}$.