$\frac{2x-1}{(2x+3)(x+1)^2} \equiv \frac{A}{2x+3} + \frac{B}{x+1} + \frac{C}{(x+1)^2}$	B1	3. 1a	Correct form for partial fractions – may be awarded later or implied by later working	Check carefully for their labelling of their <i>A</i> , <i>B</i> and <i>C</i>
$2x-1 = A(x+1)^2 + B(2x+3)(x+1) + C(2x+3)$	M1*	1.1a	Allow sign errors only – this mark can be implied by at least one correct value www	
$x = -1 \Longrightarrow C = -3$	A1	1.1	www	
$x = -\frac{3}{2} \Longrightarrow A = -16$	A1	1.1	www	
$x = 0 \Longrightarrow B = 8$	A1	1.1	www $-\frac{16}{2x+3} + \frac{8}{x+1} - \frac{3}{(x+1)^2}$	
$\int \left(\frac{-16}{2x+3} + \frac{8}{x+1} - \frac{3}{(x+1)^2}\right) dx$ = $a \ln(2x+3) + b \ln(x+1) + c(x+1)^{-1}$	M1dep*	2.1	Any non-zero values for a , b and c (from correct form of pf – no additional terms) – allow use of modulus instead of brackets throughout – condone omission of brackets throughout if recovered later	All signs may have been swapped (in advance of calculating area)
$= -8\ln(2x+3) + 8\ln(x+1) + 3(x+1)^{-1}$	A1	1.1	All correct, may be un-simplified	Limits not required for this or previous mark
(21, 4, 21, 3, 2) $(21, 2, 2)$			Correct use of the correct limits of 0 and $\frac{1}{2}$	Dependent on all
$= \left(-8 \ln 4 + 8 \ln \frac{2}{2} + 2\right) - \left(-8 \ln 3 + 3\right)$	M1dep*	3.1a	Allow $\pm \left(F\left(\frac{1}{2}\right) - F(0)\right)$	previous M marks
$= 8\ln\frac{3}{2} + 8\ln 3 - 8\ln 4 - 1 = 8\ln\left(\frac{\frac{3}{2}\times3}{4}\right) - 1$	M1	2.1	Correctly combining their log terms to a single log term– dependent on correct use of the correct limits and two log terms only (of the form $a\ln(2x+3)+b\ln(x+1)$)	Must be using 0.5 and 0 as limits
Integral is $8\ln\frac{9}{8} - 1 \Rightarrow \text{Area} = 1 + 8\ln\frac{8}{9}$	A1	3.2a	Final answer must be positive (as it is an area) www	$p=1, q=8, r=\frac{8}{9}$
	[10]			

ALT	$\frac{2x-1}{(2x+3)(x+1)^2} = \frac{A}{2x+3} + \frac{Bx+C}{(x+1)^2}$	B1	Correct form for partial fractions – may be awarded later or implied by later working	
	$2x - 1 \equiv A(x+1)^{2} + (2x+3)(Bx+C)$	M1*	Allow sign errors only – this mark can be implied by at least one correct value www	
	A = -16	A1	www	
	B=8	A1	www	
	<i>C</i> = 5	A1	www $\frac{2x-1}{(2x+3)(x+1)^2} \equiv -\frac{16}{2x+3} + \frac{8x+5}{(x+1)^2}$	
	$\int \frac{8x+5}{(x+1)^2} dx$ e.g. using the substitution $u = x+1$ gives		Correct method for integrating $\frac{8x+5}{(x+1)^2}$	
	$\int \frac{8(u-1)+5}{u^2} du = \int \frac{8}{u} - \frac{3}{u^2} du = 8\ln u + \frac{3}{u}$	M1dep*	leading to an expression of the form $\pm \alpha \ln u \pm \frac{\beta}{u}$ (oe for their correct method)	
	$= -8\ln(2x+3) + 8\ln(x+1) + 3(x+1)^{-1} \text{ or}$ = $-8\ln(2x+3) + 8\ln u + \frac{3}{u}$	A1	All correct, may be un-simplified	Limits not required for this or previous mark
			Correct use of the correct limits of 0 and $\frac{1}{2}$	
	$= \left(-8\ln 4 + 8\ln \frac{3}{2} + 2\right) - \left(-8\ln 3 + 3\right)$	M1dep*	for x and 1 and $\frac{3}{2}$ if integrated expression still in terms of u (oe) (as in the main scheme allow limits applied either way round)	Dependent on all previous M marks
	$= 8\ln\frac{3}{2} + 8\ln 3 - 8\ln 4 - 1 = 8\ln\left(\frac{3}{2} \times 3}{4}\right) - 1$	M1	Correctly combining their log terms to a single log term- dependent on correct use of the correct limits and two log terms only (of the form $a \ln(2x+3)+b \ln(x+1)$)	Must be using 0.5 and 0 as limits
	Integral is $8\ln\frac{9}{8} - 1 \Longrightarrow$ Area $= 1 + 8\ln\frac{8}{9}$	A1 [10]	Final answer must be positive (as it is an area) www	$p=1, q=8, r=\frac{8}{9}$