	$\int_0^1 \frac{1}{2 + \sqrt{x}} \mathrm{d}x \approx \frac{11}{4} - \sqrt{2} .$	[5]
(ii)	Use the substitution $x = u^2$ to find the exact value of	
	$\int_0^4 \frac{1}{2 + \sqrt{x}} \mathrm{d}x .$	[6]

Use the trapezium rule, with two strips of equal width, to show that

Using your answers to parts (i) and (ii), show that
$$\sqrt{2}$$

g your answers to parts (i) and (ii), show that
$$\ln 2 \propto k + \sqrt{2}$$

$$\ln 2 \approx k + \frac{\sqrt{2}}{4}$$
.

[2]

$$\ln 2 \approx k + \frac{\sqrt{2}}{4},$$

$$\ln 2 \approx k + \frac{\sqrt{2}}{4},$$

$$m \sim \kappa + 4$$
,

where
$$k$$
 is a rational number to be determined.