Alex is investigating the area, A, under the graph of $y = x^2$ between x = 1 and x = 1.5. They draw the graph, together with rectangles of width $\delta x = 0.1$, and varying heights y. and 0.855 respectively. [1] (a) Use the rectangles in the diagram to show that lower and upper bounds for the area A are 0.73 (b) Alex finds lower and upper bounds for the area A, using widths δx of decreasing size. The results are shown in the table. Where relevant, values are given correct to 3 significant figures. | Width δx | 0.1 | 0.05 | 0.025 | 0.0125 | |------------------------|-------|-------|-------|--------| | Lower bound for area A | 0.73 | 0.761 | 0.776 | 0.784 | | Upper bound for area A | 0.855 | 0.823 | 0.807 | 0.799 | Use Alex's results to estimate the value of A correct to 2 significant figures. Give a brief justification for your estimate. [2] [2] (c) Write down an expression, in terms of y and δx , for the exact value of the area A.