Alex is investigating the area, A, under the graph of $y = x^2$ between x = 1 and x = 1.5. They draw the graph, together with rectangles of width $\delta x = 0.1$, and varying heights y.

and 0.855 respectively. [1]

(a) Use the rectangles in the diagram to show that lower and upper bounds for the area A are 0.73

(b) Alex finds lower and upper bounds for the area A, using widths δx of decreasing size. The results are shown in the table. Where relevant, values are given correct to 3 significant figures.

Width δx	0.1	0.05	0.025	0.0125
Lower bound for area A	0.73	0.761	0.776	0.784
Upper bound for area A	0.855	0.823	0.807	0.799

Use Alex's results to estimate the value of A correct to 2 significant figures. Give a brief justification for your estimate. [2]

[2]

(c) Write down an expression, in terms of y and δx , for the exact value of the area A.