

The diagram shows part of the curve $f(x) = \frac{e^x}{4x^2 - 1} + 2$. The equation f(x) = 0 has a positive root

 α close to x = 0.3.

(a) Explain why using the sign change method with
$$x = 0$$
 and $x = 1$ will fail to locate α . [1]

[2]

[3]

[3]

Show that the equation f(x) = 0 can be written as $x = \frac{1}{4}\sqrt{(4-2e^x)}$. Use the iterative formula $x_{n+1} = \frac{1}{4}\sqrt{(4-2e^{x_n})}$ with a starting value of $x_1 = 0.3$ to find the

value of
$$\alpha$$
 correct to 4 significant figures, showing the result of each iteration.
(d) An alternative iterative formula is $x_{n+1} = F(x_n)$, where $F(x_n) = \ln(2 - 8x_n^2)$.

3

By considering F'(0.3) explain why this iterative formula will not find α .