4		It is given that $ABCD$ is a quadrilateral. The position vector of A is $\mathbf{i} + \mathbf{j}$, and the position vector of B is $3\mathbf{i} + 5\mathbf{j}$.	
	(a)	Find the length AB .	[1]
	(b)	The position vector of C is $p\mathbf{i} + p\mathbf{j}$ where p is a constant greater than 1.	
		Given that the length AB is equal to the length BC , determine the position vector of C .	[3]
	(c)	The point M is the midpoint of AC .	
		Given that $\overrightarrow{MD} = 2\overrightarrow{BM}$, determine the position vector of D .	[2]
	(d)	State the name of the quadrilateral ABCD, giving a reason for your answer.	[2]