| 4 | | It is given that $ABCD$ is a quadrilateral. The position vector of A is $\mathbf{i} + \mathbf{j}$, and the position vector of B is $3\mathbf{i} + 5\mathbf{j}$. | | |---|-----|---|-----| | | (a) | Find the length AB . | [1] | | | (b) | The position vector of C is $p\mathbf{i} + p\mathbf{j}$ where p is a constant greater than 1. | | | | | Given that the length AB is equal to the length BC , determine the position vector of C . | [3] | | | (c) | The point M is the midpoint of AC . | | | | | Given that $\overrightarrow{MD} = 2\overrightarrow{BM}$, determine the position vector of D . | [2] | | | (d) | State the name of the quadrilateral ABCD, giving a reason for your answer. | [2] |