Question		n	Answer	Mark s	AO	Guidance	
10	(a)		area $OMB = \frac{1}{2} (\frac{1}{2}r)r\sin\theta$ $2(\frac{1}{2}r^2\theta - \frac{1}{4}r^2\sin\theta) = 3(\frac{1}{4}r^2\sin\theta)$ OR $2(\frac{1}{2}r^2\theta) = 5(\frac{1}{4}r^2\sin\theta)$ OR $3(\frac{1}{2}r^2\theta) = 5(\frac{1}{2}r^2\theta - \frac{1}{4}r^2\sin\theta)$	B1 M1	1.1 3.1a	Correct (possibly unsimplified) area of <i>OMB</i> Attempt to use ratio on two correct areas	Could use other than <i>r</i> for the radius Could set their variable equal to <i>OM</i> , giving a radius that is double this eg $OM = x$ so area $= x^2 \sin\theta$ Using two of $OMB (\frac{1}{4}r^2 \sin\theta)$, $MAB (\frac{1}{2}r^2\theta - \frac{1}{4}r^2 \sin\theta)$ and $OAB (\frac{1}{2}r^2\theta)$ oe with their variable Must be two correct areas Must be using the correct ratio for their two areas ie 2:3 if using <i>OMB</i> and <i>MAB</i> , 2:5 if using <i>OMB</i> and <i>OAB</i> or 3:5 if using <i>MAB</i> and <i>OAB</i> Allow ratio to be used the wrong way around eg $2OMB = 3MAB$
				A1	2.1	Correct equation, in two variables (ie θ and their r)	Any correct statement linking the two areas Could use other than <i>r</i> for the radius Or $2x^2\theta - x^2\sin\theta$
			$\theta - \frac{1}{2}\sin\theta = \frac{3}{4}\sin\theta$	A1	2.1	Simplify to given answer	At least one line of working once ratio
			$\theta = 1.25 \sin \theta$ A.G.				usea
				[4]			

Question		on	Answer	Mark	AO	Guidance	
10	(b)		0.599	B1	1.1a	Obtain correct first iterate	3sf or better – more accurate answer is 0.599281923 Condone truncating if more sig fig given
			0.705, 0.810	M1	1.1 a	Attempt correct iterative process to find at least 2 more values	M1 is for the correct process for finding θ_3 and θ_4 , but these may be incorrect M0 if working in degrees
			root = 1.13	A1 [3]	1.1	Obtain 1.13	Possibly following B0 if first iterate is wrong but process then self corrects Must follow M1 ie a clear attempt to use the correct iterative process Must be 3sf Once M1 is awarded, allow A1 for 1.13 even if an incorrect iterate seen, as process will recover
10	(c)		REAL PROPERTY OF A CONTRACT OF	B1*	3.1a	Draw $y = \theta$ on diagram	Draw straight line, starting at the origin which intersects the graph Allow point of intersection to be greater than $\theta = \frac{1}{2}\pi$ Ignore incorrect labels, such as $y = x$

Question)n	Answer	Mark s	AO	Guidance	
				B1 dep*	2.1	Draw correct iterative process on diagram	Vertically into the curve, then horizontally into the straight line, as far
							as the root Initial value should be before root Needs point of intersection to be before $\theta = \frac{1}{2}\pi$
				B1 [3]	1.2	State 'staircase' convergence	Mark independently from other parts of question, including an incorrect diagram, as staircase can be deduced from the iterates in (b)
10	(d)			B1*	3.1a	Draw graph of $y = \sin^{-1} 0.8\theta$, for $\theta \ge 0$	Just need correct shape for $y = \sin^{-1}k\theta$ graph – a one to one function that starts at the origin (ignore any $\theta < 0$) and has increasing gradient for all θ
				B1 dep* [2]	3.2a	Draw $y = \theta$, and show staircase divergence from the root found in (b), on at least one side of the root	Straight line from the origin to intersect their graph Diagram is sufficient for B1 – no comment or explanation required