

The diagram shows triangle ABC. The perpendicular from C to AB meets AB at D.

[1]

[1]

[4]

[5]

Angle ACD = x, angle DCB = y, length BC = a and length AC = b.

- (i) Explain why the length of CD can be written as $a\cos y$.
- (ii) Show that the area of the triangle ADC is given by $\frac{1}{2}ab\sin x\cos y$.
- (iii) Hence, or otherwise, show that $\sin(x+y) = \sin x \cos y + \cos x \sin y$.

(b) Given that
$$\sin(30^\circ + \alpha) = \cos(45^\circ - \alpha)$$
, show that $\tan \alpha = 2 + \sqrt{6} - \sqrt{3} - \sqrt{2}$.