10	(a)	(i)	$\cos y = \frac{CD}{a}$ hence $CD = a\cos y$	B1	2.4	Justification for CD	Need to see either $\cos y = \frac{CD}{a}$ or
ÍI '							$adj = hyp \times cos\theta$ before given answer
 '				[1]			
		(ii)	area = $\frac{1}{2}AC.CD\sin x = \frac{1}{2}b(a\cos y)\sin x$	B1	2.4	Use area of triangle to show given	Could quote general expression for area
			$=\frac{1}{2}ab\sin x\cos y \textbf{A.G.}$			answer	and then show clear substitution
							If not, then sides being used need to be
							clearly identified through statement or
							diagram
							Could also use right-angled triangle, with
							base as AD
							Condone not being rearranged to given
							expression
				[1]			
		(iii)	$CD = b\cos x$	B1	2.1	Correct CD in terms of b and x	

Question	Answer	Marks	AO	Guidance	
	Area <i>BCD</i> =	B 1	2.1	Correct area of triangle BCD	B0 B1 if correct area stated with no
	$\frac{1}{2}BC.CD\sin y = \frac{1}{2}a(b\cos x)\sin y$				justification
	$=\frac{1}{2}ab\cos x\sin y$				
	$\frac{1}{2} d\theta \cos \theta \sin \theta$ Area <i>ABC</i> =	B1	1 1		
		BI	1.1	Correct area of triangle ABC	
	$\frac{1}{2}AC.BC\sin(x+y) = \frac{1}{2}ab\sin(x+y)$				
	$\frac{1}{2}ab\sin(x+y) = \frac{1}{2}ab\sin x\cos y + \frac{1}{2}ab\cos x\sin y$	B 1	2.1	Equate area of <i>ABC</i> to the sum of	Allow alternative proofs eg using lengths
	$\sin(x+y) = \sin x \cos y + \cos x \sin y$			the areas of the two small triangles	
				and complete proof convincingly	
		[4]			
		[4]			
(b)	$\sin 30\cos \alpha + \cos 30\sin \alpha =$	B 1	1.1	Correct use of compound angle	Could be implied if exact values used
				formulae	immediately – allow BOD for RHS
	$\cos 45 \cos \alpha + \sin 45 \sin \alpha$				May be seen as two separate expressions,
					not yet equated
	$\frac{1}{2}\cos\alpha + \frac{1}{2}\sqrt{3}\sin\alpha = \frac{1}{2}\sqrt{2}\cos\alpha + \frac{1}{2}\sqrt{2}\sin\alpha$	M1	1.1	Use exact trig values	In either equation or two expressions
					Must see all 4 values, but expansions may
		N/1	21-		not be fully correct
	$\left(\sqrt{3}-\sqrt{2}\right)\sin\alpha = \left(\sqrt{2}-1\right)\cos\alpha$	M1	3.1 a	Gather like terms and attempt $\tan \alpha$	$\tan \alpha$ does not yet need to be the subject,
	$\sin \alpha$ $\sqrt{2} - 1$			May still have fractions in the fraction	but must only appear once for M1
	$\frac{\sin \alpha}{\cos \alpha} = \tan \alpha = \frac{\sqrt{2} - 1}{\sqrt{3} - \sqrt{2}}$			naction	
		M1	3.1a	Attempt to rationalise their	Clear intention seen to multiply throughout
	$=\frac{(\sqrt{2}-1)(\sqrt{3}+\sqrt{2})}{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})}=\frac{\sqrt{6}+2-\sqrt{2}-\sqrt{3}}{3-2}$		ciiu	denominator	by the conjugate of their denominator
	$(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})$ $3-2$				
	$\tan \alpha = 2 + \sqrt{6} - \sqrt{3} - \sqrt{2}$ A.G.	A1	2.1	Obtain given answer	With full detail, including (at least) $3 - 2$ in
	$\tan \alpha = 2 \pm \sqrt{0} = \sqrt{3} = \sqrt{2}$ A.G.				denominator
					denominator

