9	(a)	$e^{kt} > 0$ for all t , so $y > 0$ for $t \ge 0$ (or for all t) hence never crosses <i>x</i> -axis	B1	2.4	Or show that $2e^{-3t} = 0$ has no solutions	Need to see $y \neq 0$ or $y > 0$ and reason relating to exponential (or logarithmic) function
			[1]			Must clearly be referring to y or $2e^{-3t}$
	(b)	$e^{2t} - 4e^t + 3 = 0$ $(e^t - 1)(e^t - 3) = 0$ $e^t = 1, e^t = 3$	M1	3.1a	Equate to 0 and attempt to solve disguised quadratic	'determine' so some evidence of method needed
		$t = 0, t = \ln 3$	A1 [2]	1.1	Obtain both correct values	A0 for ln1 and not 0
	(c)	$\frac{\mathrm{d}x}{\mathrm{d}t} = 2\mathrm{e}^{2t} - 4\mathrm{e}^{t}$	B1	1.1	Correct $\frac{\mathrm{d}x}{\mathrm{d}t}$	Mark derivative and condone no/wrong label

Question		Answer	Marks	AO	Guidance	
		$\frac{dy}{dt} = -6e^{-3t}$	B1	1.1	Correct dy	Mark derivative and condone no/wrong
		dt dt			Connect $\frac{dt}{dt}$	label
		$dy \qquad -6e^{-3t}$	M1	2.4	Attempt correct method to combine	Combine their derivatives correctly
		$\frac{1}{\mathrm{d}x} = \frac{1}{2\mathrm{e}^{2t} - 4\mathrm{e}^{t}}$			derivatives	
		$dy -3e^{-3t}$ 3 3	A1	2.1	Show manipulation to given answer	Need to see some evidence of how e^{-3t} is
		$\frac{1}{dx} = \frac{1}{e^{2t} - 2e^{t}} = \frac{1}{e^{3t} (2e^{t} - e^{2t})} = \frac{1}{2e^{4t} - e^{5t}}$				dealt with
		A.G.				AG so method must be fully correct
			[4]			
	(d)	$2e^{4t} - e^{5t} = 0$	M1	3.1 a	Equate denominator to 0	Or $\frac{dx}{dt} = 0$ or $\frac{dx}{dt} = 0$
						dy dt
		$e^{4t}\left(2-e^{t}\right)=0$	A1	1.1	Solve for <i>t</i> to obtain $t = \ln 2$	No need to see $e^{4t} = 0$ discounted
		$t = \ln 2$				
		$(-1, \frac{1}{4})$	A1	1.1	Obtain correct coordinate	Or $x = -1$, $y = \frac{1}{4}$
			[3]			
			1	1		8