6	(a)	$(1 - \frac{3}{8}x)^{\frac{1}{3}} = 1 + (\frac{1}{3})(-\frac{3}{8}x) + \frac{(\frac{1}{3})(-\frac{2}{3})(-\frac{3}{8}x)^2}{2!}$	B1	1.1	Obtain correct first two terms	Allow unsimplified second term, including product of two fractions
			M1	1.1	Attempt third term in expansion of $(1-\frac{3}{8}x)^{\frac{1}{3}}$	Allow BOD if no brackets, even if never recovered Allow BOD if no negative sign
		$=1 - \frac{1}{8}x - \frac{1}{64}x^2$	A1	1.1	Correct third term	Allow unsimplified fraction as coefficient, but must be single term
		$(8-3x)^{\frac{1}{3}} = 8^{\frac{1}{3}}(1-\frac{3}{8}x)^{\frac{1}{3}} = 2(1-\frac{3}{8}x)^{\frac{1}{3}}$	B1FT	1.1	Correct expansion of $(8-3x)^{\frac{1}{3}}$	FT as 2 x their expansion (at least two terms)
		$(8-3x)^{\frac{1}{3}} = 2 - \frac{1}{4}x - \frac{1}{32}x^2$	[4]			Bracket expanded and fractions simplified
	(b)	$\left x\right < \frac{8}{3}$	B1	1.2	Allow any equivalent eg $-\frac{8}{3} < x < \frac{8}{3}$	Must be strict inequality Must be condition for <i>x</i> , so B0 for $ 3x < 8$
			[1]			
	(c)	$(1+2x)^{-2} = 1 + (-2)(2x) + \frac{(-2)(-3)}{2!}(2x)^{2}$	M1	3.1a	Attempt first three terms of expansion	Must be expanding $(1 + 2x)^{-2}$ Allow BOD if no brackets on 2 <i>x</i> , even if never recovered
		$=1-4x+12x^{2}$	A1	1.1	Obtain correct first three terms	Allow unsimplified fraction for coeff of third term
		$(2 \times 12) + (-\frac{1}{4} \times -4) + (-\frac{1}{32} \times 1)$	M1	1.1	Attempt all 3 relevant products	Finding 3 appropriate terms from the product of two 3-term quadratics If part of full expansion then M1 when reqd 3 products and no others are combined

Question		Answer	Marks	AO	Guidance	
		$\frac{799}{32}$ or $24\frac{31}{32}$	A1	1.1	Any exact equivalent, including	Condone x^2 still present
					24.96875	
			[4]			