13		recentist is attempting to model the number of insects, N , present in a colony at time t weeks. When t are 400 insects and when $t = 1$ there are 440 insects.	: 0
	(i)	A scientist assumes that the rate of increase of the number of insects is inversely proportional to t number of insects present at time t .	he
		(a) Write down a differential equation to model this situation.	[1]
		(b) Solve this differential equation to find N in terms of t .	[4]
	(ii)	In a revised model it is assumed that $\frac{dN}{dt} = \frac{N^2}{3988e^{0.2t}}$. Solve this differential equation to find N terms of t.	in [6]

Compare the long-term behaviour of the two models.