| 13 | | recentist is attempting to model the number of insects, N , present in a colony at time t weeks. When t are 400 insects and when $t = 1$ there are 440 insects. | : 0 | |----|------|---|-----------| | | (i) | A scientist assumes that the rate of increase of the number of insects is inversely proportional to t number of insects present at time t . | he | | | | (a) Write down a differential equation to model this situation. | [1] | | | | (b) Solve this differential equation to find N in terms of t . | [4] | | | (ii) | In a revised model it is assumed that $\frac{dN}{dt} = \frac{N^2}{3988e^{0.2t}}$. Solve this differential equation to find N terms of t. | in
[6] | Compare the long-term behaviour of the two models.