

The diagram shows a model for the roof of a toy building. The roof is in the form of a solid triangular prism ABCDEF. The base ACFD of the roof is a horizontal rectangle, and the cross-section ABC of the roof is an isosceles triangle with AB = BC.

The lengths of AC and CF are 2x cm and y cm respectively, and the height of BE above the base of the roof is x cm.

The total surface area of the **five** faces of the roof is $600 \, \mathrm{cm}^2$ and the volume of the roof is $V \, \mathrm{cm}^3$.

- (a) Show that $V = kx(300 x^2)$, where $k = \sqrt{a} + b$ and a and b are integers to be determined. [6]
- (b) Use differentiation to determine the value of x for which the volume of the roof is a maximum. [4]
- (c) Find the maximum volume of the roof. Give your answer in cm³, correct to the nearest integer.

(d) Explain why, for this roof, x must be less than a certain value, which you should state.

[2]

[1]