research, is mode	ned by the	Tollowing I	ormura.				
$P = 100 \mathrm{e}^t$							
(a) Use this mod	del to answ	er the follow	ving.				
(i) Find the value of P when $t = 4$.							[1]
(ii) Find the value of t when the population is 9000.							[2]
(b) It is suspected	ed that a mo	ore appropri	ate model w	ould be the	following fo	ormula.	
$P = ka^t$ whe	ere k and a	are constant	S.				
(i) Show th	at, using th	nis model, th	ne graph of l	$og_{10}P$ agai	nst t would t	e a straight line.	[2]
Some observ	vations of t	and P gave	the followin	g results.			
t	1	2	3	4	5	E	
P	100	500	1800	7000	19000		
$\log_{10}P$	2.00	2.70	3.26	3.85	4.28		

[2]

[4]

 $(t, \log_{10} P)$ given in the table.

(iii)

Hence estimate the values of k and a.

During some research the size, P, of a population of insects, at time t months after the start of the

