Question	Scheme	Marks	AOs
10(a)	Attempts to solve $\frac{3}{2} = \frac{8x+5}{2x+3} \Rightarrow x =$	M1	3.1a
	Or substitutes $x = \frac{3}{2}$ into $\frac{5-3x}{2x-8}$	1111	5.14
	$\left(\mathbf{f}^{-1}\left(\frac{3}{2}\right)=\right)-\frac{1}{10}$	A1	1.1b
		(2)	
(b)	$\left(\frac{8x+5}{2x+3}\right) = 4 \pm \frac{\dots}{2x+3}$	M1	1.1b
	$\left(\frac{8x+5}{2x+3} = \right)4 - \frac{7}{2x+3}$	A1	2.1
		(2)	J
(c)	$0 \leqslant g^{-1}(x) \leqslant 4$	B1	2.2a
		(1)	
(d)	Attempts either boundary $f(0) = \frac{8 \times 0 + 5}{2 \times 0 + 3} \text{ or } f(4) = \frac{8 \times 4 + 5}{2 \times 4 + 3}$	M1	3.1a
	$I(0) = \frac{1}{2 \times 0 + 3}$ or $I(4) = \frac{1}{2 \times 4 + 3}$		
	Attempts both boundaries	20.00	
	$f(0) = \frac{8 \times 0 + 5}{2 \times 0 + 3}$ and $f(4) = \frac{8 \times 4 + 5}{2 \times 4 + 3}$	dM1	1.1b
	Range $\frac{5}{3} \leqslant fg^{-1}(x) \leqslant \frac{37}{11}$	A1	2.1
		(3)	
	Alternative by attempting $fg^{-1}(x)$		
	$g^{-1}(x) = \sqrt{16-x} \Rightarrow fg^{-1}(x) = \frac{8\sqrt{16-x}+5}{2\sqrt{16-x}+3}$	M1	3.1a
	$fg^{-1}(0) = \frac{8 \times 4 + 5}{2 \times 4 + 3}$ or $fg^{-1}(16) = \frac{8 \times 0 + 5}{2 \times 0 + 3}$	144	5.14
	$fg^{-1}(0) = \frac{8 \times 4 + 5}{2 \times 4 + 3}$ and $fg^{-1}(16) = \frac{8 \times 0 + 5}{2 \times 0 + 3}$	dM1	1.1b
	Range $\frac{5}{3} \leqslant fg^{-1}(x) \leqslant \frac{37}{11}$	A1	2.1
		(3)	8 mark

M1: Attempts to solve $\frac{3}{2} = \frac{8x+5}{2x+3} \Rightarrow x = \dots$ You can condone poor algebra as long as they reach a

Alternatively attempt to substitute $x = \frac{3}{2}$ into $f^{-1}(x) = \frac{\pm 5 \pm 3x}{\pm 2x \pm 8}$ or equivalent (may be in terms of y). Note that attempts to find e.g. f'(x) or $\frac{1}{f(x)}$ which may be implied by values such as

 $\frac{6}{17}$, $\frac{17}{6}$, $\frac{7}{18}$, $\frac{18}{7}$ score M0

A1: Achieves $\left(f^{-1}\left(\frac{3}{2}\right)\right) = -\frac{1}{10}$. Do not be concerned what they call it, just look for the value e.g. $x = -\frac{1}{10}$ or just $-\frac{1}{10}$ is fine. Correct answer with no (or minimal) working scores both marks.

Also allow for correct values e.g. A = 4, B = -7

but not e.g. $0 \le x \le 4$, $0 \le g(x) \le 4$, (0, 4)

or uses (b) e.g. $f(0) = 4 - \frac{7}{2 \times 0 + 3}$ or $f(4) = 4 - \frac{7}{2 \times 4 + 3}$

B1: Deduces $0 \le g^{-1}(x) \le 4$ o.e.

PTO for an alternative to (d)

M1: Attempts to divide 8x + 5 by 2x + 3

Look for $4 \pm \frac{...}{2x+3}$ where ... is a constant or 8x+5 = A(2x+3) + B with A or B correct

(which may be in a fraction) or in a long division attempt and obtains a quotient of 4

or attempts to express the numerator in terms of the denominator e.g. $\frac{8x+5}{2x+3} = \frac{4(2x+3)+...}{2x+3}$

A1: A full and complete method showing $\frac{8x+5}{2x+3} = 4 - \frac{7}{2x+3}$ or $\frac{8x+5}{2x+3} = 4 + \frac{-7}{2x+3}$

Do not isw here e.g. if they obtain A = 4, B = -7 and then write $-7 + \frac{4}{2x+3}$ score A0

M1: Attempts either boundary. Look for either $f(0) = \frac{8 \times 0 + 5}{2 \times 0 + 3}$ or $f(4) = \frac{8 \times 4 + 5}{2 \times 4 + 3}$

or uses (b) e.g. $f(0) = 4 - \frac{7}{2 \times 0 + 3}$ and $f(4) = 4 - \frac{7}{2 \times 4 + 3}$

E.g. $\frac{5}{3} \leqslant fg^{-1}(x) \leqslant \frac{37}{11}$, $\frac{5}{3} \leqslant range \leqslant \frac{37}{11}$, $\frac{5}{3} \leqslant y \leqslant \frac{37}{11}$, $fg^{-1}(x) \leqslant \frac{37}{11}$ and $fg^{-1}(x) \geqslant \frac{5}{2}$

 $\frac{5}{3} \leqslant fg^{-1} \leqslant \frac{37}{11}, fg^{-1}(x) \leqslant \frac{37}{11} \cap fg^{-1}(x) \geqslant \frac{5}{3}, \left[\frac{5}{3}, \frac{37}{11}\right] \text{ but not e.g. } \frac{5}{3} \leqslant x \leqslant \frac{37}{11}$

A1: Correct answer written in the correct form.

dM1: Attempts both boundaries. Look for $f(0) = \frac{8 \times 0 + 5}{2 \times 0 + 3}$ and $f(4) = \frac{8 \times 4 + 5}{2 \times 4 + 3}$

E.g. $0 \le y \le 4$, $0 \le \text{range} \le 4$, $g^{-1}(x) \le 4$ and $g^{-1}(x) \ge 0$, $0 \le g^{-1} \le 4$, [0, 4]

(d)

(c)

(b)

(d) Alternative: M1: Attempts $fg^{-1}(x)$ and either boundary using x = 0 or x = 16

Look for either
$$fg^{-1}(0) = \frac{8 \times g^{-1}(0) + 5}{2 \times g^{-1}(0) + 3}$$
 or $fg^{-1}(16) = \frac{8 \times g^{-1}(16) + 5}{2 \times g^{-1}(16) + 3}$

$$2 \times g \quad (0) + 3$$
 $2 \times g \quad (16) + 3$
Or uses (b) e.g. $fg^{-1}(0) = 4 - \frac{7}{2 \times g^{-1}(0) + 3}$ or $fg^{-1}(16) = 4 - \frac{7}{2 \times g^{-1}(16) + 3}$

The attempt at $fg^{-1}(x)$ requires an attempt to substitute $\sqrt{16-x}$ (condone $\pm\sqrt{16-x}$) into f

dM1: Attempts both boundaries. Look for
$$fg^{-1}(0) = \frac{8 \times g^{-1}(0) + 5}{2 \times g^{-1}(0) + 3}$$
 and $fg^{-1}(16) = \frac{8 \times g^{-1}(16) + 5}{2 \times g^{-1}(16) + 3}$
Or uses (b) e.g. $fg^{-1}(0) = 4 - \frac{7}{2 \times g^{-1}(0) + 3}$ and $fg^{-1}(16) = 4 - \frac{7}{2 \times g^{-1}(16) + 3}$

$$2 \times g \quad (0) + 3 \qquad \qquad 2 \times g \quad (10) + 3$$

The attempt at fg⁻¹(x) requires an attempt to substitute $\sqrt{16-x}$ (condone $\pm\sqrt{16-x}$) into f

A1: Correct answer written in the correct form with exact values.
E.g.
$$\frac{5}{3} \leqslant fg^{-1}(x) \leqslant \frac{37}{11}$$
, $\frac{5}{3} \leqslant range \leqslant \frac{37}{11}$, $\frac{5}{3} \leqslant y \leqslant \frac{37}{11}$, $fg^{-1}(x) \leqslant \frac{37}{11}$ and $fg^{-1}(x) \geqslant \frac{5}{3}$
 $\frac{5}{3} \leqslant fg^{-1} \leqslant \frac{37}{11}$, $fg^{-1}(x) \leqslant \frac{37}{11} \cap fg^{-1}(x) \geqslant \frac{5}{3}$, $\left[\frac{5}{3}, \frac{37}{11}\right]$ but not e.g. $\frac{5}{3} \leqslant x \leqslant \frac{37}{11}$

Note that the $\frac{37}{11}$ is sometimes obtained fortuitously from incorrect working so check working carefully.