13. The resting metabolic rate, Rml of oxygen consumed per hour, of a particular species of mammal is modelled by the formula, $R = aM^b$

where
$$\frac{(a)}{\log R} = \log(a M^b)$$

- log R = loga + log(Mb) (mark) log R = loga + blog M (Imark) M grams is the mass of the mammal a and b are constants
- (a) Show that this relationship can be written in the form

$$\log_{10}R = b \log_{10}M + \log_{10}a$$
(2)

$$\log_{10}R = b \log_{10}M + \log_{10}a$$

$$= \frac{1 \cdot 9 - 1 \cdot 2}{1 \cdot 8 - 0 \cdot 7} = \frac{0 \cdot 7}{1 \cdot 1} = \frac{7}{11}$$

$$= 0 \cdot 6363... = 0 \cdot 63634$$
(1.8, 1.9)
$$\log_{10}R = b \log_{10}M + \log_{10}a$$
(2)
$$\log_{10}R = b \log_{10}M + \log_{10}a$$
(2)
$$\log_{10}R = b \log_{10}M + \log_{10}a$$
(2)
$$\log_{10}R = b \log_{10}M + \log_{10}a$$
(1.8, 1.9)
$$\log_{10}R = b \log_{10}M + \log_{10}a$$
(1.8, 1.9)
$$\log_{10}R = b \log_{10}M + \log_{10}a$$
(2)
$$\log_{10}R = b \log_{10}M + \log_{10}a$$
(2)
$$\log_{10}R = b \log_{10}M + \log_{10}a$$
(1.8, 1.9)

 $\log_{10}M$

A student gathers data for R and M and plots a graph of $\log_{10}R$ against $\log_{10}M$

Figure 3

The graph is a straight line passing through points (0.7, 1.2) and (1.8, 1.9) as shown in Figure 3.

(b) Using this information, find a complete equation for the model.

$$R = aM^b$$

giving the value of each of a and b to 3 significant figures.

Write your answer in the form

(c) With reference to the model, interpret the value of the constant a

(b) cotd. so,
$$R = 5.69 \, \text{M}^{0.636}$$
 (1 mark)
(c) when Mass = 1g, $R = a(1)^b = a$

50 a is the resting metabolic rate for a mammal of

(3)

(1)