Question	Scheme	Marks	AOs
11(a)	$\frac{\mathrm{d}x}{\mathrm{d}t} = -kx^2$	M1	3.3
	$\frac{\mathrm{d}x}{\mathrm{d}t} = -kx^2 \Longrightarrow \int \frac{\mathrm{d}x}{x^2} = \int -k \mathrm{d}t \Longrightarrow \dots$	M1	2.1
	$\frac{1}{x} = kt + c$	A1	1.1b
	x $x = 3.5, t = 0 x = 2, t = 1 \implies c =, k =$	M1	3.1a
	$\frac{1}{x} = \frac{3}{14}t + \frac{2}{7}$ or $t = \frac{1}{kx} + c$	A1	1.1b
	$x = \frac{14}{3t+4} *$	A1*	2.1
		(6)	
(b)	$0.5 = \frac{14}{3T+4} \Rightarrow 1.5T+2 = 14 \Rightarrow T = \dots$ $T = 8$	M1	3.4
	T = 8	A1	1.1b
		(2)	
NT-4		(8	marks)
Notes			
(a) M1: Translates the description of the model into mathematics. Allow $\frac{dx}{dt} = kx^2$			
M1: Separates the variables and attempts to integrate. A1: Correct equation with or without the "+ c" M1: Uses both conditions in order to find both constants. A1: Correct equation in any form. A1*: Fully correct proof. (b)			
M1: Uses $x = 0.5$ in the model and rearranges to find T A1: Obtains the correct value for T (or states 8 weeks)			