Question	Scheme	Marks	AOs
10(a)	(36, 27)	B1	1.1b
		(1)	
(b)	$\frac{dy}{dx} = \frac{6t}{3t^2 + 3} = \frac{18}{30}$ $y - 27 = \frac{3}{5}(x - 36)$	M1	1.1b
	$y - 27 = \frac{3}{5}(x - 36)$	M1	2.1
	3x - 5y + 27 = 0*	A1*	1.1b
(c)	2 5 27 2 2(3 2) 5(22) 27 2	(3)	
(c)	$3x - 5y + 27 = 0 \Rightarrow 3(t^3 + 3t) - 5(3t^2) + 27 = 0$	M1	3.1a
	$3t^3 - 15t^2 + 9t + 27 = 0 \Rightarrow (t - 3)^2 (3t + 3) = 0$	M1	1.1b
	$t = -1 \Rightarrow Q \text{ is } (-4, 3)$	A1	2.2a
(1)		(3)	
(d)	$(Area =) \int y dx = \int 3t^2 \left(3t^2 + 3\right) dt$	M1	2.1
	$=9\left[\frac{t^5}{5} + \frac{t^3}{3}\right]_{-1}^3 = 9\left(\frac{3^5}{5} + \frac{3^5}{5} - \left(-\frac{1}{5} - \frac{1}{3}\right)\right)\left(=\frac{2616}{5}\right)$	M1	1.1b
	Area of trapezium = $\frac{1}{2}(36+4)(27+3)(=600)$	M1	2.1
	Area of <i>R</i> is $600 - \frac{2616}{5}$	M1	3.1a
	$=\frac{384}{5}$	A1	1.1b
		(5)	
(12 marks)			
Notes			
(a) B1: Correct coordinates			
(b)			
M1: Correct strategy for the gradient at P			
M1: For using their gradient at <i>P</i> and their point <i>P</i> with a correct straight line method A1*: Correct equation following correct working			
(c)			
M1: Awarded for starting the process to find the value of t at Q . E.g. substitutes the parametric			
form for C into their l			
M1: Deduces that $(x-3)^2$ (or $(x-3)$) is a factor and uses this to make progress in finding the required linear factor of the cubic. Alternatively solves cubic using calculator.			
A1: Deduces the correct coordinates of Q			
(d)			
M1: For attempting $\int y \times \frac{dx}{dt} dt$			
M1: Correct use of limits			
M1: For the correct trapezium area approach using their values			
M1: For a complete strategy for finding the area of R. There must have been an attempt at the			
I	the curve and an attempt and the trapezium and an attempt to subtract.		
A1: Correct area oe e.g. 76.8			