Question	Scheme	Marks	AOs
14(a)	$\frac{\mathrm{d}V}{\mathrm{d}t} = 0.48 - 0.1h$	B1	3.1b
	$V = 24h \Longrightarrow \frac{dV}{dh} = 24$ or $\frac{dh}{dV} = \frac{1}{24}$	B1	3.1b
	$\frac{dh}{dt} = \frac{dV}{dt} \times \frac{dh}{dV} = \frac{0.48 - 0.1h}{24}$ or e.g. $\frac{dV}{dt} = \frac{dV}{dh} \frac{dh}{dt} \Longrightarrow 0.48 - 0.1h = 24 \frac{dh}{dt}$	M1	2.1
	$1200\frac{\mathrm{d}h}{\mathrm{d}t} = 24 - 5h^*$	A1*	1.1b
		(4)	
(b)	$1200\frac{\mathrm{d}h}{\mathrm{d}t} = 24 - 5h \Longrightarrow \int \frac{1200}{24 - 5h} \mathrm{d}h = \int \mathrm{d}t$		
	$\Rightarrow e.g. \ \alpha \ln(24-5h) = t(+c)$ oe or	M1	3.1a
	$1200 \frac{dh}{dt} = 24 - 5h \Longrightarrow \frac{dt}{dh} = \frac{1200}{24 - 5h}$ $\implies e.g. \ t(+c) = \alpha \ln(24 - 5h) \text{ oe}$		
	$t = -240 \ln (24 - 5h)(+c)$ oe	A1	1.1b
	$t = 0, h = 2 \Longrightarrow 0 = -240 \ln (24 - 10) + c \Longrightarrow c =(240 \ln 14)$	M1	3.4
	$t = 240\ln(14) - 240\ln(24 - 5h)$	A1	1.1b
	$t = 240 \ln \frac{14}{24 - 5h} \Rightarrow \frac{t}{240} = \ln \frac{14}{24 - 5h} \Rightarrow e^{\frac{t}{240}} = \frac{14}{24 - 5h}$ $\Rightarrow 14e^{-\frac{t}{240}} = 24 - 5h \Rightarrow h = \dots$	ddM1	2.1
	$h = 4.8 - 2.8e^{-\frac{t}{240}} \text{ or e.g. } h = \frac{24}{5} - \frac{14}{5}e^{-\frac{t}{240}}$	A1	3.3
		(6)	
(c)	Examples:		
	• As $t \to \infty, e^{-\frac{t}{240}} \to 0$		
	 When <i>h</i> > 4.8, dV/dt < 0 Flow in = flow out at max <i>h</i> so 0.1<i>h</i> = 4.8 → <i>h</i> = 4.8 		
	• As $e^{-\frac{t}{240}} > 0$, $h < 4.8$	M1	3.1b
	• $h = 5 \Rightarrow \frac{dV}{dt} = -0.02 \text{ or } \frac{dh}{dt} = -\frac{1}{1200}$ • $\frac{dh}{dt} = 0 \Rightarrow h = 4.8$		
	• $h = 5 \Longrightarrow 4.8 - 2.8 e^{-\frac{t}{240}} = 5 \Longrightarrow e^{-\frac{t}{240}} < 0$		
	 The limit for <i>h</i> (according to the model) is 4.8m and the tank is 5m high so the tank will never become full If <i>h</i> = 5 the tank would be emptying so can never be full 	A1	3.2a
	• The equation can't be solved when $h = 5$	(2)	
		(-)	

Notes
(a)
B1: Identifies the correct expression for $\frac{dV}{dt}$ according to the model
B1: Identifies the correct expression for $\frac{dV}{dh}$ according to the model
M1: Applies $\frac{dh}{dt} = \frac{dV}{dt} \times \frac{dh}{dV}$ or equivalent correct formula with their $\frac{dV}{dt}$ and $\frac{dV}{dh}$ which may
be implied by their working
A1*: Correct equation obtained with no errors
Note that: $\frac{\mathrm{d}V}{\mathrm{d}t} = 0.48 - 0.1h \Longrightarrow \frac{\mathrm{d}h}{\mathrm{d}t} = \frac{0.48 - 0.1h}{24} \Longrightarrow 1200 \frac{\mathrm{d}h}{\mathrm{d}t} = 24 - 5h \text{ * scores}$
B1B0M0A0. There must be clear evidence where the "24" comes from and evidence of the correct chain rule being applied. (b)
M1: Adopts a correct strategy by separating the variables correctly or rearranges to obtain $\frac{dt}{dh}$
correctly in terms of <i>h</i> and integrates to obtain $t = \alpha \ln (24-5h)(+c)$ or equivalent (condone
missing brackets around the " $24 - 5h$ ") and $+c$ not required for this mark.
A1: Correct equation in any form and $+ c$ not required. Do not condone missing brackets unless they are implied by subsequent work.
M1: Substitutes $t = 0$ and $h = 2$ to find their constant of integration (there must have been some attempt to integrate)
A1: Correct equation in any form
ddM1: Uses fully correct log work to obtain h in terms of t .
This depends on <u>both</u> previous method marks. A1: Correct equation
Note that the marks may be earned in a different order e.g.:
$t + c = -240\ln(24 - 5h) \Longrightarrow -\frac{t}{240} + d = \ln(24 - 5h) \Longrightarrow Ae^{-\frac{t}{240}} = 24 - 5h$
$t = 0, h = 2 \Longrightarrow A = 14 \Longrightarrow 14e^{-\frac{t}{240}} = 24 - 5h \Longrightarrow h = 4.8 - 2.8e^{-\frac{t}{240}}$
Score as M1 A1 as in main scheme then
M1: Correct work leading to $Ae^{\alpha t} = 24 - 5h$ (must have a constant "A")
$A_1: A_2 - \frac{t}{240} - 2A - 5h$

A1:
$$Ae^{\frac{1}{240}} = 24 - 5h$$

ddM1: Uses t = 0, h = 2 in an expression of the form above to find A

A1:
$$h = 4.8 - 2.8e^{-\frac{t}{240}}$$

(c)

M1: See scheme for some examples

A1: Makes a correct interpretation for their method.

There must be no incorrect working or contradictory statements.

This is not a follow through mark and if their equation in (b) is used it must be correct.