Question	Scheme	Marks	AOs
5(a)(i)	$\frac{dy}{dx} = 20x^3 - 72x^2 + 84x - 32$	M1 A1	1.1b 1.1b
(ii)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 60x^2 - 144x + 84$	A1ft	1.1b
		(3)	
(b)(i)	$x = 1 \Longrightarrow \frac{dy}{dx} = 20 - 72 + 84 - 32$	M1	1.1b
	$\frac{dy}{dx} = 0$ so there is a stationary point at $x = 1$	A1	2.1
	Alternative for (b)(i)		
	$20x^{3} - 72x^{2} + 84x - 32 = 4(x - 1)^{2}(5x - 8) = 0 \Longrightarrow x = \dots$	M1	1.1b
	When $x = 1$, $\frac{dy}{dx} = 0$ so there is a stationary point	A1	2.1
(b)(ii)	Note that in (b)(ii) there are no marks for <u>just</u> evaluating $\left(\frac{d^2 y}{dx^2}\right)_{x=1}$		
	E.g. $\left(\frac{d^2 y}{dx^2}\right)_{x=0.8} = \dots \left(\frac{d^2 y}{dx^2}\right)_{x=1.2} = \dots$	M1	2.1
	$\left(\frac{d^2 y}{dx^2}\right)_{x=0.8} > 0, \qquad \left(\frac{d^2 y}{dx^2}\right)_{x=1.2} < 0$ Hence point of inflection	A1	2.2a
		(4)	
	Alternative 1 for (b)(ii)	(-•)	
	$\left(\frac{d^2 y}{dx^2}\right)_{x=1} = 60x^2 - 144x + 84 = 0 \text{ (is inconclusive)}$ $\left(\frac{d^3 y}{dx^3}\right) = 120x - 144 \Longrightarrow \left(\frac{d^3 y}{dx^3}\right) = \dots$	M1	2.1
	$\left(\frac{d^2 y}{dx^2}\right)_{x=1} = 0 \text{and} \left(\frac{d^3 y}{dx^3}\right)_{x=1} \neq 0$ Hence point of inflection	A1	2.2a
	Alternative 2 for (b)(ii)		
	E.g. $\left(\frac{dy}{dx}\right)_{x=0.8} = \dots \left(\frac{dy}{dx}\right)_{x=1.2} = \dots$	M1	2.1
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{x=08} < 0, \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{x=12} < 0$	A1	2.2a
	Hence point of inflection		
	Notes	(7	marks)
(a)(i) M1: $x^n \rightarrow$ A1: $\frac{dy}{dx} =$ (a)(ii)	x^{n-1} for at least one power of x $20x^3 - 72x^2 + 84x - 32$		

Alft: Achieves a correct $\frac{d^2y}{dx^2}$ for their $\frac{dy}{dx} = 20x^3 - 72x^2 + 84x - 32$ (b)(i) M1: Substitutes x = 1 into their $\frac{dy}{dx}$ A1: Obtains $\frac{dy}{dx} = 0$ following a correct derivative and makes a conclusion which can be minimal e.g. tick, QED etc. which may be in a preamble e.g. stationary point when $\frac{dy}{dx} = 0$ and then shows $\frac{dy}{dx} = 0$ **Alternative:** M1: Attempts to solve $\frac{dy}{dx} = 0$ by factorisation. This may be by using the factor of (x - 1) or possibly using a calculator to find the roots and showing the factorisation. Note that they may divide by 4 before factorising which is acceptable. Need to either see either $4(x-1)^2(5x-8)$ or $(x-1)^2(5x-8)$ for the factorisation or $x = \frac{8}{5}$ and x = 1 seen as the roots. A1: Obtains x = 1 and makes a conclusion as above

M1: Considers the value of the second derivative either side of x = 1. Do not be too concerned with the interval for the method mark.

(NB $\frac{d^2 y}{dx^2} = (x-1)(60x-84)$ so may use this factorised form when considering x < 1, x > 1 for sign change of second derivative)

A1: Fully correct work including a correct $\frac{d^2y}{dx^2}$ with a reasoned conclusion indicating that the

stationary point is a point of inflection. Sufficient reason is e.g. "sign change"/ "> 0, < 0". If values are given they should be correct (but be generous with accuracy) but also just allow "> 0" and "< 0" provided they are correctly paired. The interval must be where x < 1.4

Alternative 1 for (b)(ii)

M1: Shows that second derivative at x = 1 is zero and then finds the third derivative at x = 1

A1: Fully correct work including a correct $\frac{d^2y}{dx^2}$ with a reasoned conclusion indicating that

stationary point is a point of inflection. Sufficient reason is " $\neq 0$ " but must follow a correct third

derivative and a correct value if evaluated. For reference $\left(\frac{d^3y}{dx^3}\right) = -24$

Alternative 2 for (b)(ii)

M1: Considers the value of the first derivative either side of x = 1. Do not be too concerned with the interval for the method mark.

A1: Fully correct work with a reasoned conclusion indicating that stationary point is a point of inflection. Sufficient reason is e.g. "same sign"/"both negative"/"< 0, < 0". If values are given they should be correct (but be generous with accuracy). The interval must be where x < 1.4

x	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
f'(x)	-32	-24.3	-17.92	-12.74	-8.64	-5.5	-3.2	-1.62	-0.64	-0.14	0
f''(x)	84	70.2	57.6	46.2	36	27	19.2	12.6	7.2	3	0

x	1.1	1.2	1.3	1.4	1.5	1.6	1.7
f'(x)	-0.1	-0.32	-0.54	-0.64	-0.5	0	0.98
f''(x)	-1.8	-2.4	-1.8	0	3	7.2	12.6