QuestionSchemeMarksAOs10 (a)
$$\cos 3A = \cos (2A + A) = \cos 2A \cos A - \sin 2A \sin A$$
M13.1a $= (2\cos^2 A - 1)\cos A - (2\sin A \cos A)\sin A$ dM11.1b $= (2\cos^2 A - 1)\cos A - 2\cos A(1 - \cos^2 A)$ ddM12.1

	$=4\cos^3 A - 3\cos A^*$	A1*	1.1b
		(4)	
(b)	$1 - \cos 3x = \sin^2 x \Longrightarrow \cos^2 x + 3\cos x - 4\cos^3 x = 0$	M1	1.1b
	$\Rightarrow \cos x (4\cos^2 x - \cos x - 3) = 0$ $\Rightarrow \cos x (4\cos x + 3)(\cos x - 1) = 0$ $\Rightarrow \cos x = \dots$	dM1	3.1a
	Two of -90°, 0, 90°, awrt 139°	A1	1.1b
	All four of –90°, 0, 90°, awrt 139°	A1	2.1
		(4)	
			(8 marks)

Notes:

(a)

Allow a proof in terms of x rather than A

M1: Attempts to use the compound angle formula for cos(2A + A) or cos(A + 2A)

Condone a slip in sign

dM1: Uses correct double angle identities for cos 2A and sin 2A

 $\cos 2A = 2\cos^2 A - 1$ must be used. If either of the other two versions are used expect to see an attempt to replace $\sin^2 A$ by $1 - \cos^2 A$ at a later stage.

Depends on previous mark.

ddM1: Attempts to get all terms in terms of cos A using correct and appropriate identities.

Depends on both previous marks.

A1*: A completely correct and rigorous proof including correct notation, no mixed variables, missing brackets etc. Alternative right to left is possible:

 $4\cos^{3} A - 3\cos A = \cos A \left(4\cos^{2} A - 3\right) = \cos A \left(2\cos^{2} A - 1 + 2\left(1 - \sin^{2} A\right) - 2\right) = \cos A \left(\cos 2A - 2\sin^{2} A\right)$

 $= \cos A \cos 2A - 2\sin A \cos A \sin A = \cos A \cos 2A - \sin 2A \sin A = \cos(2A + A) = \cos 3A$

Score M1: For $4\cos^3 A - 3\cos A = \cos A (4\cos^2 A - 3)$

dM1: For
$$\cos A \left(2\cos^2 A - 1 + 2\left(1 - \sin^2 A\right) - 2 \right)$$
 (Replaces $4\cos^2 A - 1$ by $2\cos^2 A - 1$ and $2\left(1 - \sin^2 A\right)$)

ddM1: Reaches $\cos A \cos 2A - \sin 2A \sin A$

A1:
$$\cos(2A + A) = \cos 3A$$

(b)

- M1: For an attempt to produce an equation just in $\cos x$ using both part (a) and the identity $\sin^2 x = 1 \cos^2 x$ Allow one slip in sign or coefficient when copying the result from part (a)
- **dM1: Dependent upon the preceding mark**. It is for taking the cubic equation in $\cos x$ and making a valid attempt to solve. This could include factorisation or division of a $\cos x$ term followed by an attempt to solve the 3 term quadratic equation in $\cos x$ to reach at least one non zero value for $\cos x$.

May also be scored for solving the cubic equation in cos *x* to reach at least one non zero value for cos *x*.

A1: Two of -90°, 0, 90°, awrt 139° Depends on the <u>first</u> method mark.

A1: All four of -90° , 0, 90° , awrt 139° with no extra solutions offered within the range.

Note that this is an alternative approach for obtaining the cubic equation in (b):

$$1 - \cos 3x = \sin^2 x \Longrightarrow 1 - \cos 3x = \frac{1}{2} (1 - \cos 2x)$$

- $\Rightarrow 2 2\cos 3x = 1 \cos 2x$
- $\Rightarrow 1 = 2\cos 3x \cos 2x$

$$\Rightarrow 1 = 2(4\cos^3 x - 3\cos x) - (2\cos^2 x - 1)$$
$$\Rightarrow 0 = 4\cos^3 x - 3\cos x - \cos^2 x$$

The M1 will be scored on the penultimate line when they use part (a) and use the correct identity for $\cos 2x$