<u>ia</u>	firstly integ	rating		
	Question	Scheme	Marks	AOs

	Т		
8	$f'(x) = 6x^2 + ax - 23 \Rightarrow f(x) = 2x^3 + \frac{1}{2}ax^2 - 23x + c$	M1	1.1b
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1	1.1b
	"c"=-12	B1	2.2a
	$f(-4) = 0 \Rightarrow 2 \times (-4)^3 + \frac{1}{2}a(-4)^2 - 23(-4) - 12 = 0$	dM1	3.1a
	a = (6)	dM1	1.1b
	$(f(x) =)2x^3 + 3x^2 - 23x - 12$		
	Or Equivalent e.g. $(f(x)=)(x+4)(2x^2-5x-3) (f(x)=)(x+4)(2x+1)(x-3)$	A1cso	2.1
	(1(x)-)(x+1)(2x-3x-3) $(1(x)-)(x+1)(x-3)$		
		(6)	
			(6 marks)

Notes:

M1: Integrates f'(x) with two correct indices. There is no requirement for the +c

A1: Fully correct integration (may be unsimplified). The +c must be seen (or implied by the -12)

B1: Deduces that the constant term is -12

dM1: Dependent upon having done some integration. It is for setting up a linear equation in a by using f(-4) = 0 May also see long division attempted for this mark. Need to see a complete method leading to a remainder in terms of a which is then set = 0.

For reference, the quotient is $2x^2 + \left(\frac{a}{2} - 8\right)x + 9 - 2a$ and the remainder is 8a - 48

May also use $(x + 4)(px^2 + qx + r) = 2x^3 + \frac{1}{2}ax^2 - 23x - 12$ and compare coefficients to find p, q and r and

hence a. Allow this mark if they solve for p, q and r

Note that some candidates use 2f(x) which is acceptable and gives the same result if executed correctly. **dM1:** Solves the linear equation in a or uses p, q and r to find a.

It is dependent upon having attempted some integration and used $f(\pm 4) = 0$ or long division/comparing coefficients with (x + 4) as a factor.

A1cso: For $(f(x) =)2x^3 + 3x^2 - 23x - 12$ oe. Note that "f(x) =" does not need to be seen and ignore any "= 0"

Via firstly using factor

Question	Scheme	Marks	AOs
8 Alt	$f(x) = (x+4)(Ax^2 + Bx + C)$	M1 A1	1.1b 1.1b
	$f(x) = Ax^3 + (4A + B)x^2 + (4B + C)x + 4C \Rightarrow C = -3$	B1	2.2a
	$f'(x) = 3Ax^2 + 2(4A+B)x + (4B+C)$ and $f'(x) = 6x^2 + ax - 23$ $\Rightarrow A =$	dM1	3.1a
	Full method to get A , B and C	dM1	1.1b
	$f(x) = (x+4)(2x^2-5x-3)$	Alcso	2.1
		(6)	

Notes:

M1: Uses the fact that f(x) is a cubic expression with a factor of (x + 4)

A1: For $f(x) = (x + 4)(Ax^2 + Bx + C)$

B1: Deduces that C = -3

dM1: Attempts to differentiate either by product rule or via multiplication and compares to $f'(x) = 6x^2 + ax - 23$ to find A. **dM1:** Full method to get A, B and C

A1cso: $f(x) = (x + 4)(2x^2 - 5x - 3)$ or f(x) = (x + 4)(2x + 1)(x - 3)