

Figure 8 shows a sketch of the curve C with equation

$$y=x^x$$
, $x>0$.

(a) Find, by firstly taking logarithms, the x coordinate of the turning point of C.

(Solutions based entirely on graphical or numerical methods are not acceptable.)

$$(b) \quad 2 = x^{2} \Rightarrow 2 - x^{2} = 0 \tag{5}$$

The point $P(\alpha, 2)$ lies on C.

2-1-61-6 = -0.12125 ...

(b) Show that $1.5 < \alpha < 1.6$.

A possible iteration formula that could be used in an attempt to find α is

$$x_{n+1}=2x_n^{1-x_n}.$$

Using this formula with $x_1 = 1.5$,

$$x_1 = 1.5 x_2 = 1.63299...$$

(c) find x_4 to 3 decimal places,

$$x_{n+1} = 2x_n^{-m}$$
.
(c) $x_1 = 1.5$
 $x_2 = 1.63299...$ $2[A_{ns}]^{1-[A_{ns}]}$
 $x_3 = 1.64626...$
 $x_4 = 1.67313...$ $\Rightarrow x_4 = 1.67334p$ (2)
ar of x_n .

(d) describe the long-term behaviour of x_n .

(d) or a does not converge, but oscillates, diverging until it settles oscillating between 1 and 2. (found by repeating iteration on calculator). (2 marks)

(Total for Question 11 is 11 marks)

(2)

(2)