

Figure 7

Figure 7 shows a sketch of triangle *OAB*.

The point C is such that $\overrightarrow{OC} = 2\overrightarrow{OA}$.

The point M is the midpoint of AB.

The straight line through C and M cuts OB at the point N.

Given
$$\overrightarrow{OA} = \mathbf{a}$$
 and $\overrightarrow{OB} = \mathbf{b}$

(a) Find
$$\overrightarrow{CM}$$
 in terms of **a** and **b**

(b) Show that $\overrightarrow{ON} = \left(2 - \frac{3}{2}\lambda\right)\mathbf{a} + \frac{1}{2}\lambda\mathbf{b}$, where λ is a scalar constant.

(c) Hence prove that
$$ON: NB = 2:1$$

(2)

(2)

(2)