Questi	on Scheme	Marks	AOs				
13 (a)	States or uses $6 = \pi r^2 h + \frac{2}{3} \pi r^3$	B1	1.1a				
	$\Rightarrow h = \frac{6}{\pi r^2} - \frac{2}{3}r, \ \pi h = \frac{6}{r^2} - \frac{2}{3}\pi r, \ \pi r h = \frac{6}{r} - \frac{2}{3}\pi r^2, \ r h = \frac{6}{\pi r} - \frac{2}{3}r^2$						
	$A = \pi r^2 + 2\pi rh + 2\pi r^2 \{ \Longrightarrow A = 3\pi r^2 + 2\pi rh \}$						
	$(4 - 2\pi r^2 + 2\pi r) (6 - 2r) + \pi r^2$	M1	3.1a				
	$A = 2\pi r + 2\pi r \left(\frac{\pi r^2}{\pi r^2} - \frac{\pi}{3}r\right) + \pi r$	A1	1.1b				
	$A = 3\pi r^{2} + \frac{12}{r} - \frac{4}{3}\pi r^{2} \implies A = \frac{12}{r} + \frac{5}{3}\pi r^{2} *$	A1*	2.1				
		(4)					
(b)	$\left\{A = 12r^{-1} + \frac{5}{2}\pi r^2 \Longrightarrow\right\} \frac{dA}{dr} = -12r^{-2} + \frac{10}{2}\pi r$	M1	3.4				
	$\begin{bmatrix} 3 \\ -3 \end{bmatrix} dr = 3$	Al	1.1b				
	$\left\{\frac{\mathrm{d}A}{\mathrm{d}r}=0 \Rightarrow \right\} -\frac{12}{r^2} + \frac{10}{3}\pi r = 0 \Rightarrow -36 + 10\pi r^3 = 0 \Rightarrow r^{\pm 3} = \dots \left\{=\frac{18}{5\pi}\right\}$	M1	2.1				
	$r = 1.046447736 \Rightarrow r = 1.05 \text{ (m)} (3 \text{ sf}) \text{ or awrt } 1.05 \text{ (m)}$	A1	1.1b				
	Note: Give final A1 for correct exact values for <i>r</i>	(4)					
(c)	$A_{\min} = \frac{12}{(1.046)} + \frac{5}{3}\pi(1.046)^2$	M1	3.4				
	$\{A_{\min} = 17.20 \Rightarrow\} A = 17 (m^2) \text{ or } A = \text{awrt } 17 (m^2)$	Alft	1.1b				
		(2)					
	(10 marks)						
(a)	Notes for Question 13						
B1:	See scheme						
M1:	Complete process of substituting their $h = \dots$ or $\pi h = \dots$ or $\pi rh = \dots$ or $rh = \dots$, where '' = f(r)						
	into an expression for the surface area which is of the form $A = \lambda \pi r^2 + \mu \pi r h$; $\lambda, \mu \neq 0$						
A1:	Obtains correct simplified or un-simplified $\{A=\} 2\pi r^2 + 2\pi r \left(\frac{6}{\pi r^2} - \frac{2}{3}r\right) + \pi r^2$						
A1*:	Proceeds, using rigorous and careful reasoning, to $A = \frac{12}{r} + \frac{5}{3}\pi r^2$						
Note:	Condone the lack of $A =$ or $S =$ for any one of the A marks or for both of the A marks						
(b)	1						
M1:	Uses the model (or their model) and differentiates $\frac{\lambda}{r} + \mu r^2$ to give $\alpha r^{-2} + \beta r$; $\lambda, \mu, \alpha, \beta \neq 0$						
A1:	$\left\{\frac{dA}{dr} = \right\} -12r^{-2} + \frac{10}{3}\pi r \text{ o.e.}$						
M1:	Sets their $\frac{dA}{dr} = 0$ and rearranges to give $r^{\pm 3} = k$, $k \neq 0$ (Note: k can be positive or negative)						
Note:	This mark can be implied.						
	Give M1 (and A1) for $-36+10\pi r^3 = 0 \rightarrow r = \left(\frac{18}{5\pi}\right)^{\frac{1}{3}}$ or $r = \left(\frac{36}{10\pi}\right)^{\frac{1}{3}}$ or $r = \left(\frac{3.6}{\pi}\right)^{\frac{1}{3}}$						
A1:	r = awrt 1.05 (ignoring units) or $r = $ awrt 105 cm						
Note:	Give M0 A0 M0 A0 where $r = 1.05$ (m) (3 sf) or awrt 1.05 (m) is found from no working.						
Note:	Give final A1 for correct exact values for r. E.g. $r = \left(\frac{18}{5\pi}\right)^{\frac{1}{3}}$ or $r = \left(\frac{36}{10\pi}\right)^{\frac{1}{3}}$ or $r = \left(\frac{3.6}{\pi}\right)^{\frac{1}{3}}$						

Notes for Question 13 Continued							
Note:	Give final M0 A0 for $-\frac{12}{r^2} + \frac{10}{3}\pi r > 0 \implies r > 1.0464$						
Note:	Give final M1 A1 for $-\frac{12}{r^2} + \frac{10}{3}\pi r > 0 \implies r > 1.0464 \implies r = 1.0464$						
(c)							
M1:	Substitutes their $r = 1.046$, found from solving $\frac{dA}{dr} = 0$ in part (b), into the model						
	with equation $A = \frac{12}{r} + \frac{5}{3}\pi r^2$						
Note:	Give M0 for substituting their r which has been found from solving $\frac{d^2 A}{dr^2} = 0$ or from using $\frac{d^2 A}{dr^2}$						
	into the model with equation $A = \frac{12}{r} + \frac{5}{3}\pi r^2$						
A1ft:	$\{A=\}$ 17 or $\{A=\}$ awrt 17 (ignoring units)						
Note:	You can only follow through on values of r for $0.6 \le$ their $r \le 1.3$ (and where their r has been						
	found from solving $\frac{dA}{dr} = 0$ in part (b))						
		A					
	r	A	(nearest integer)				
	0.6	21.88495	awrt 22				
	0.7	19.70849	awrt 20				
	0.8	18.35103	awrt 18				
	0.9	17.57448	awrt 18				
	1.0	17.23598	awrt 17				
	1.1	17.24463	awrt 17				
	1.2	17.53982	awrt 18				
	1.3	18.07958	awrt 18				
	1.05	17.20124	awrt 17				
	1.04644	17.20105	awrt 17				
Note:	Give M1 A1 for $A = 17 \text{ (m}^2)$ or $A = \text{awrt } 17 \text{ (m}^2)$ from no working						