

Figure 1 shows a sketch of part of the curve with equation y = f(x), where

 $f(x) = x^3 - 6x^2 + 7x + 2$ $x \in \mathbb{R}$

The curve cuts the
$$x$$
-axis at the points P , Q and R , as shown in Figure 1.

- The coordinates of Q are (2, 0)
- (a) Write f(x) as a product of two algebraic factors.
- (b) Find, giving your answer in simplest form,
 - (i) the exact x coordinate of P,

4.

- (ii) the exact x coordinate of R.
- (c) Deduce the number of real solutions, for $-\pi \leqslant \theta \leqslant 12\pi$, to the equation

$$\sin^3\theta - 6\sin^2\theta + 7\sin\theta + 2 = 0$$

justifying your answer.

(2)

(2)

(2)