Question	Scheme		Marks	AOs
9 (a)	$\{y = ab^t \implies\} \log_{10} y = \log_{10}(ab^t) \implies \log_{10} y = \log_{10} a + \log_{10} b^t$		M1	1.1b
	$\Rightarrow \log_{10} y = t \log_{10} b + \log_{10} a, \{ \text{where } c = \log_{10} a \}$		A1	2.1
			(2)	
(b)	$c = \log_{10} a = 2.23,$	$m = \log_{10} b = -0.076$		
	$\Rightarrow a = 10^{223} \{= 169.8243652\}$	$\Rightarrow b = 10^{-0.076} \{= 0.8394599865\}$	M1	1.1b
	a = 170 (2 sf) and b = 0.84 (2 sf)		A1	1.1b
			(2)	
(c)	$y = (170)(0.84)^t$			
	 (i) {a = "170" ⇒} e.g. "170" milligrams of antibic the initial dose of the antibic 	tic were initially given to the patient otic is estimated as "170" milligrams	B1ft	3.4
	(ii) $\{b = "0.84" \Rightarrow\}$ e.g. after the a antibiotic in the patient's bloodstreat hour	antibiotic is first given the amount of am reduces by approximately "16%" per	B1ft	3.4
			(2)	
(d)	$30 = (170)(0.84)^{t} \implies \frac{30}{170} = (0.84)^{t}$ $\implies \ln\left(\frac{30}{170}\right) = t\ln(0.84) \implies t = \frac{\ln t}{\ln t}$	$\Rightarrow \ln\left(\frac{30}{170}\right) = \ln(0.84)^{t}$ $\ln\left(\frac{30}{170}\right)$ $\ln(0.84)$	M1	3.4
	$\{t = 9.948766031 \Rightarrow\} t = 9.9(t)$	nours) (1 dp)	A1	1.1b
			(2)	
(d)	$\log_{10} 30 = -0.076t + 2.23 \implies t = -100000000000000000000000000000000000$	$\frac{2.23 - \log_{10} 30}{0.076}$	M1	3.4
Alt I	$\{t = 9.90629928 \Rightarrow\} t = 9.9$ (here)	ours) (1 dp)	A1	1.1b
			(2)	
(e)	e.g. As $t = 9.9$ is outside of the exp have enough evidence to deduce the valid. So, the estimate in part (d) sl	perimental data $0 \le t \le 5$, we do not at the model $y = (170)(0.84)^t$ is still nould be treated with caution.	B1	3.5b
			(1)	
	(9 mart			

Question 9 Notes:			
(a)			
M1:	Starting from $y = ab^t$, takes logs of both sides and uses the addition law of logarithms to		
	progress as far as $\log_{10} y = \log_{10} a + \log_{10} b^t$		
A1:	Starting from $y = ab^t$, correctly shows that $\log_{10} y = t \log_{10} b + \log_{10} a$ with no errors seen		
Note:	M1 (special case) can be given in part (a) for stating $c = \log_{10} a$		
(b)			
M1:	For either $a = 10^{223}$ or $b = 10^{-0.076}$		
A1:	a = 170 and $b = 0.84$		
(c)(i)			
B1ft:	Correct practical interpretation of their a , where their $a > 0$		
(c)(ii)			
B1ft:	Correct practical interpretation of their <i>b</i> , where their <i>b</i> : $0 < b < 1$		
(d)			
M1:	Substitutes $y = 2.5$ into the model $y = (\text{their } a)(\text{their } b)^t$ and rearranges their equation to give $t =$		
A1:	9.9 (hours) (1 dp)		
(d)			
Alt 1			
M1:	Substitutes $y = 30$, $m = -0.076$ and $c = 2.23$ into the model $\log_{10} y = mt + c$ and rearranges their		
	equation to give $t =$		
A1:	9.9 (hours) (1 dp)		
(e)			
B1:	E.g. Estimate should be treated with caution because $t = 9.9$ is outside the range of times,		
	i.e. $0 \le t \le 5$, for which the model $y = (170)(0.84)^t$ is valid		